
Machine Learning Group

— Master’s Thesis —

Disentangled Explanations for Neural Network Predictions

on Audio Data

Author: Samuel Harck

Supervisor: Prof. Klaus-Robert Müller
Prof. Grégoire Montavon

Place and Date: Berlin, October 18, 2024

Declaration of Originality

I hereby certify that I have prepared this thesis without the help of third parties and with-
out the use of sources and aids other than those indicated. The passages taken verbatim
or in terms of content from the sources used are identified as such. I confirm that this
assignment is my own work, is not copied from any other person’s work (published or
unpublished), and has not previously been submitted for assessment.

Date & Time Signature

2. Juli 2024

Abstract

As nonlinear Machine Learning (ML) models are increasingly used in various real world
applications, their black-box nature hinders in-depth model evaluation, apart from per-
formance measures. In response, the field of Explainable Artificial Intelligence (XAI) has
made much progress. It aims to reveal the rationale behind complex ML models, often
by assigning relevance scores to model parts and input features, e.g., pixels. However, in
some domains such as audio processing, where data—like time or time-frequency repre-
sentations of amplitudes—is of rather unintuitive nature, the extracted explanations can
be hard to grasp for humans. Suitably, a novel sub-field in the realm of XAI has emerged
in very recent time that aims to decompose explanations into multiple sub-explanations,
representing distinct decision concepts. These approaches offer a promising foundation to
gain more valuable insights into models and the data domain, especially when dealing with
complex data scenarios. This study targets the extraction of concept-based explanations
for a neural network applied to audio classification tasks, by utilizing the newly proposed
method, Disentangled Relevant Subspace Analysis (DRSA), in combination with Layer-
wise Relevance Propagation (LRP).

iii

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Outline . 3

2 Theoretical Background 4

2.1 Neural Networks . 4
2.1.1 Backpropagation . 5
2.1.2 Convolutional Neural Networks . 6

2.2 Explainable Artificial Intelligence . 8
2.2.1 Attribution-based Explanation Techniques 9
2.2.2 Concept-based Explanation Techniques 12
2.2.3 Evaluating Explanations . 15

2.3 Audio Processing . 16
2.3.1 Audio Representations . 16
2.3.2 Music Information Retrieval . 21
2.3.3 Explaining Music Classifiers . 21

3 Methodological Setup 23

3.1 Model . 23
3.2 Explanation Setup . 24

3.2.1 Local Attribution . 24
3.2.2 Disentangled Relevant Subspace Analysis 25
3.2.3 Two-Step Attribution . 27

3.3 Transforming Explanations into Audios . 27

4 Experiments 30

4.1 Synthetic Data . 30
4.1.1 Data Construction . 30
4.1.2 Setup . 32
4.1.3 Evaluation . 32

4.2 Music Showcase . 35
4.2.1 Setup . 35
4.2.2 Qualitative Evaluation . 36
4.2.3 Quantitative Evaluation . 39

5 Conclusion 45

5.1 Main Findings . 45

iv

5.2 Future Work . 45

A Model Details and Training Info I

A.1 Data Preprocessing . I
A.2 Model Optimization . III
A.3 Model Evaluation . IV

B Implementation Details VI

B.1 Layer-wise Relevance Propagation . VI
B.1.1 Evaluating Local Explanations . VI

B.2 Two-step Attribution and Disentangled Explanations VII
B.2.1 Optimization of Subspaces . VII
B.2.2 Two-step Attribution .VIII

B.3 Audios from Explanations .VIII

C Qualitative Evaluation Supplement IX

C.1 Synthetic Data . IX
C.2 GTZAN Data . XI

D Synthetic Data Generation XIV

D.1 Synthetic Toy Class 1 .XIV
D.2 Synthetic Toy Class 2 .XVI

D.2.1 Final Sample Construction .XVII

List of Figures

2.1 Convolution between two feature maps . 8
2.2 Schematic redistribution process of LRP . 10
2.3 Virtual layers trained with DRSA . 14
2.4 Audio representations . 19
2.5 Mel filter bank . 20

3.1 Architectural framework of the model . 23

4.1 Synthetic toy class 1 . 31
4.2 Synthetic toy class 2 . 31
4.3 Disentangled explanations for synthetic toy class 1, Conv3 33
4.4 Class specific audio objects of toy class 1 . 33
4.5 Disentangled explanations on synthetic class 1 with random subspaces . . . 34
4.6 DRSA results on genre class hiphop . 38
4.7 DRSA results on genre class jazz . 38
4.8 Qualitative experiment on class distinctiveness of concept subspaces 39
4.9 Visualization of the patch flipping procedure 40
4.10 Cross-class patch-flipping scores . 43

A.1 Training curves of model optimization . V
A.2 Confusion matrix of GTZAN model . V

B.1 Patch-flipping evaluation of LRP . VII
B.2 Learning curves DRSA . VII
B.3 Histogram plot of relevance distribution .VIII

C.1 Disentangled explanations on toy class 2, Conv3 IX
C.2 Class specific audio objects of synthetic class 2 IX
C.3 Disentangled explanations on toy class 2 . X
C.4 DRSA results on genre class reggae . XI
C.5 DRSA results on genre class metal . XII
C.6 DRSA results on genre class classical . XII
C.7 DRSA results on genre class hiphop, 2 subspacesXIII
C.8 DRSA results on genre class hiphop, 8 subspacesXIII

D.1 Class specific audio objects of toy class 1 . XV
D.2 Class specific audio objects of toy class 2 .XVI

vi

List of Tables

4.1 Sound objects contained in the synthetic dataset 30
4.2 Classes and samples contained in the GTZAN dataset 35
4.3 LRP composite of the genre recognition model 36
4.4 Patch-flipping scores for disentanglement performance 41

A.1 Data augmentation during model training II

vii

List of Abbreviations

ASR Automatic Speech Recognition

ASP Audio Signal Processing

AUPC Area under the Pixel-Flipping Curve

CNN Convolutional Neural Network

DFT Discrete Fourier Transform

DL Deep Learning

DNN Deep Neural Network

DRSA Disentangled Relevant Subspace Analysis

DSA Disentangled Subspace Analysis

DTD Deep Taylor Decomposition

FT Fourier Transform

LRP Layer-wise Relevance Propagation

MGR Music Genre Recognition

MIR Music Information Retrieval

ML Machine Learning

NN Neural Network

ReLU Rectified Linear Unit

STFT Short-time Fourier Transform

XAI Explainable Artificial Intelligence

viii

1 | Introduction
1.1. Motivation

Machine learning accounts for the aim of automatizing various tasks by building predictive
models that map inputs to outputs [1], [2]. While achieving outstanding performance [2],
[3], [4], [5], ML systems have become integral in technologies such as image recognition
[6], [4], or Audio Signal Processing (ASP) [7], [8]. Especially in domains that encompass
intricate data environments like audio, Deep Learning (DL) methods such as Deep Neural
Networks (DNNs) have paved their way to be the preferred choice. Specific applications in
the realm of ASP include automatic speech recognition [9], [7], [10], [11], Music Information
Retrieval (MIR) [12], [13], [14], [15], music generation [16], [17], or audio event classification
[18], [19]. Since audio signals can be represented in various forms, e.g., waveforms (large
sequences of amplitudes), or time-frequency representations (spectrograms that depict fre-
quency content over time), DL models can be trained on diverse input types, delivering
exceptional results [20], [14], [19], [8].

However, to account for the growing need of providing robust and trustworthy systems,
where high performance is not the only characteristic of importance [21], [22], the decision
strategy of the applied models requires to be unfolded. Yet, most ML approaches, espe-
cially DNNs, usually exhibit a high nonlinearity which comes along with their capability
of solving complex tasks [1], [2]. This nonlinearity engenders these models to be inherently
hard to interpret which is why they are often referred to as ‘black-box’ models. For these
reasons, the field of XAI has emerged as an active research area with the goal to reveal the
reasoning structure of nonlinear ML methods [23], [24], [25], [26].

In this fairly new field of research, already a variety of methods have been proposed [23],
[25], [24], [27], [28], [29]. Within the realm of post-hoc explanations, i.e., explaining fully
trained models, particularly attribution-based approaches have gained high popularity [30],
[23], [25], [26]. Through attributing relevance scores to model parts and input features,
these methods provide detailed insights into the rationale of ML models with respect to
single data points, thus providing local explanations. These methods have proven to be
beneficial in various tasks, which include: revealing a biased decision behaviour of ML
models towards spurious correlations in data, unmasking the so called ‘Clever-Hans’ effect
[31], [32], [33], improvement of model performance [34], [35], [36], [37], or the discovery of
new scientific insights [38], [39].

1

1.1. Motivation 2

Although attribution-based XAI has shown to be a powerful tool, there are still limita-
tions associated to them [22], [40]. Through highlighting important regions, i.e., visualizing
where to find relevant features, the questions remains if and how those features are inter-
connected to eventually form high-level objects governing a models decision [35], [41], [42],
[43], [44]. Hence, it is of big interest to extract such richer explanations as these could
provide semantically more valuable insights into a model and the data domain [22]. Con-
sequently, a novel sub-field of XAI has recently gained attention that focuses on extracting
richer structured explanations, especially, concept-based explanations [35], [41], [43], [42].
These methods are based on discoveries that neural networks encode latent concepts which
play a significant role in their decision-making process [45], [46]. Through extracting such
global concepts from hidden feature layers of DL models, yet, expressing them locally,
these approaches aim to combine benefits of both, local and global XAI [35], [41].

Applying XAI to ASP systems can service different aspects. Gaining insights into models
and the audio domain that is being analyzed, allows to compare ASP systems trained on
different types of input representations on a higher level [47], [48], [49]. Furthermore, high-
lighting important features in the inputs that guide the decision making process of audio
classification models can lead to a deeper understanding of the characteristics present in
the data, and allow the design of more directed approaches for some task at hand [50],
[51], [49], [48]. However, the utility of traditional local explanations may suffer from the
inherent nature of audio data [52]. In particular, audio data such as music is typically
a composition of multiple overlaid sound objects, forming the resulting signal [53], [54].
Hence, obtaining a multitude of relevance scores associated with various input features may
by of limited use, by merging important components into a single explanation [55], [52].
On the account of this, concept-based XAI represents a promising approach to analyze au-
dio data, and more generally, high dimensional data such as time-series. Speaking about
Music Genre Recognition (MGR), decomposing explanations into several sub-explanations
can lead to an increased understanding on the compositional nature of music that groups
musical pieces into several genres [55], [50], [52].

Yet, ensuring that explanations are understandable to humans remains a challenge in all
the aforementioned XAI techniques [51], [49]. Whereas some domains already offer a direct
interpretable basis, e.g. images or text that can be overlayed with relevance scores, others
lack on this advantage. This is most likely the reason why the majority of progress in XAI
was made in fields with intuitively interpretable data. For instance, in the realm of time-
series analysis, XAI methods are still being adapted. Interpretation of data in time domain
forms a challenging task due to its high dimensionality [56], [49]. Given the prevalence of
time dependent data in real world scenarios such as the medical field, forecasting applica-

1.2. Outline 3

tions, or the audio domain, this limitation has to be addressed. Nevertheless, the realm of
audio data provides a solid foundation that is naturally comprehensible to humans, namely
listenable audio tracks. This feature can be leveraged when explaining audio classification
systems.

Taking one further step towards explaining Neural Network (NN) decisions on a higher
level, this work conquers the extraction of concept-based explanations on DL methods ap-
plied in the domain of audio data. This is tackled by showcasing the performance of DRSA
[35] to extract multiple sub-explanations on an audio classification task, specifically, music
genre recognition. Furthermore, a methodology is established to transform explanatory
components into a human interpretable domain, i.e., listenable audio tracks, to improve
evaluation capabilities.

1.2. Outline

The core components of this work are structured into four distinct work packages. Firstly,
a task related to the field of ASP, namely MGR, is solved by training a DL approach
on audio inputs in time-frequency domain. Secondly, an attribution-based XAI method,
e.g., LRP [23], is employed to explain model decisions locally, i.e. for single data points.
Thereafter, relevant subspaces are optimized with DRSA [35] that represent important
components within the data the model has encoded. After implementing a two-step attri-
bution to visualize joint input-concept explanations at the input domain, a methodology
is provided to transform explanations into listenable audio tracks. This will play in hand
with the last step, namely qualitative and quantitative evaluation of the explanation per-
formance. To provide a solid basis for evaluation, a synthetic dataset is created that fits
the purpose of this study.

2 | Theoretical Background
2.1. Neural Networks

As the use of ML has seen a significant surge in recent years, tasks to solve increase in
complexity, and the volume of data to process is growing [2], [57]. For these reasons, es-
pecially DL approaches gained high popularity as these methods have achieved superior
performance in various tasks, including pattern recognition [4], Automatic Speech Recogni-
tion (ASR) [58], or natural language processing [5], [9]. The main driver for this develop-
ment is their ability to independently learn powerful representations from raw data, which
serve as foundation for their decision-making [59], [60].

Neural networks are predictive models that produce real valued outputs for given inputs.
The core component of a NN is the artificial neuron, which is inspired by the biological
neuron contained in the human brain. It can be seen as an extreme simplification of a
biological neuron that only kept two major functionalities, namely to process information
in a nonlinear manner, and the ability to learn. Through interconnecting a large number
of artificial neurons, NNs are capable of approximating any nonlinear function, albeit de-
pending on their size (universal approximation theorem) [1], [60], [61]. But how do neurons
facilitate the ability to learn?

A neuron defines a nonlinear function that can process an arbitrary number of inputs, so
called input activations, to produce some real valued output. Suppose the input activations
as aj , with j being an index for each input. The mapping performed by a neuron can
decomposed into two separate steps, beginning by calculating a weighted sum over the
inputs according to

zk =
X

j

ajwjk + bk , (2.1)

where wjk and bk define the learnable parameters of neuron k, and are referred to as
weights, and bias, respectively. Thereafter, the weighted sum zk is typically processed
through some simple, nonlinear function to produce the output activation ak of neuron k

according to

ak = g(zk) . (2.2)

In this equation, g(·) defines the nonlinearity, and is often referred to as activation function

4

2.1. Neural Networks 5

because it determines if and how a neuron is activated by its inputs. A widely used
activation function is the Rectified Linear Unit (ReLU) [4], [6], which simply maps negative
inputs to zero according to

g(zk) = max(0, zk) . (2.3)

Introducing these simple nonlinearities is a central concept because it allows DNNs to rep-
resent highly nonlinear functions through the interconnection of many such neurons [1].
Applied nonlinearities should be differentiable almost everywhere, to allow smooth gradi-
ent computations across the network. This property is crucial for the optimization process
which is addressed in Section 2.1.1.

In NNs, neurons are typically structured in layers that subsequently process information.
Suppose a DNN that models the input-output relation y = f(x) for an arbitrary input
vector x with x 2 Rdx . Assume this model to be a composition of L layers. The mapping
from input to output can be decomposed into a sequence of linear transformations, each
followed by the application of an elementwise nonlinearity as defined by:

y = fL � ... � fl � ... � f1 , (2.4)

where fl(·) denotes the transformation applied by layer l. However, there are numerous
different NN architectures that are more or less suitable for various tasks [57], [2].

2.1.1. Backpropagation

Suppose a neural network yn = f✓(xn) that produces a real valued output yn 2 R for
each input sample xn 2 Rdx . The subscript ✓ represents the set of learnable parameters of
the network, i.e., the weights and biases, on which the network output is dependent. In a
supervised learning setting, each input xn corresponds to a true target tn, which is known.
The goal is to learn an optimal set of parameters ✓, such that the model minimizes the
error between predicted outputs yn and true targets tn. This is quantified by some error
measure, often referred to as loss function. Let the loss be represented by E✓, where E✓ = 0

defines a perfect mapping of inputs to outputs [1].

Since optimizing neural networks is a non-convex problem, learning an optimal parameter
set is achieved by an iterative procedure. Within this procedure, the parameter set is
repeatedly updated by performing gradient descent of the error function w.r.t. to model
parameters. This approach builds on the Perceptron algorithm, originally proposed by F.
Rosenblatt in 1958 [61]. Each parameter ✓q 2 ✓ is updated according to

2.1. Neural Networks 6

✓q = ✓q � ⌘
@E✓
@✓q

, (2.5)

where ⌘ defines the learning rate, hence, the size of parameter adjustments. The fundamen-
tal concept that enables efficient parameter updates is backpropagation [62], also known
as error-backpropagation. It makes use of the multivariate chain rule for derivatives to
compute the partial derivatives of the error with respect to each learnable parameter.

Consider yn = f✓(xn) to be a feed-forward NN, thus a model that processes information
strictly one-directional from input to output. Suppose j and k denote indices for inter-
connected neurons contained in two successive intermediate layers of the neural network.
Assume a completed forward pass, i.e., inputs xn contained in some dataset of size N , have
been propagated through the network, and the error E✓ is readily given. Let wjk 2 ✓ be the
parameter of interest that should be updated. By applying the chain rule of derivatives,
the partial derivative of the error with respect to wjk is defined as

@E
@wjk

=
@ak

@wjk

· @E
@ak

. (2.6)

The reason for backpropagation being such an efficient algorithm, is that the partial deriva-
tive to each activation ak, can be calculated as the sum of all ‘incoming’ partial derivatives
from the connected neurons in the layer above [62]. The partial derivative with respect to
some arbitrary activation aj is thus defined by:

@E
@aj

=
X

k

@ak

�aj
· @E
@ak

. (2.7)

Equation 2.7 can be repeatedly applied, starting form the output of the network until the
input is reached. The full process of backpropagating the gradient from the output down
to the inputs, is often referred to as backward pass [62].

2.1.2. Convolutional Neural Networks

Traditional, densely connected, feed-forward neural networks, process fixed size input vec-
tors, where features have to be presented in a predefined, yet arbitrary, order [59]. However,
for tasks that process real world signals, like audio data or images, such unstructured NN
have limitations [59], [2]. Natural signals are often a composition of a hierarchically ordered
objects [2]. In the case of images, an object is composed of several parts, which in turn
are formed by a composition of smaller motifs like textures and edges [46]. Additionally,
objects in images can occur with all kinds of geometric variabilities, such as distortions,
or variations in scale and translation. The same logic applies to audio data, e.g., speech,
where sentences are composed of words that are sequences of vowels and consonants, or

2.1. Neural Networks 7

music, where sound objects are composed of melodic and rhythmic structures, which in
turn are a composition of sounds from several instruments. To account for the within class
variabilities and the compositional structure of real world signals, the Convolutional Neural
Network (CNN) was proposed [59], [2]. This network is specifically designed to process
data in the form of multiple arrays, such as 2-dimensional images or audio spectrograms.
Through providing characteristics like robustness against geometric distortions within the
inputs, as well as invariance to a shift in scale or translation, CNNs achieve superior per-
formance in various applications [4], [6], [63], [46], [14].

Typically, CNNs are structured in several stages, where the first few stages serve as feature
extractor. Each stage is a combination of so called convolutional layers and pooling layers.
Essentially, a convolutional layer is a composition of multiple units, also referred to as
kernels, which are organized in feature maps. All units contained in one feature map are
connected to a different local patch of their input, with a set of weights that is identical
for all units contained in a feature map. This weight sharing allows each feature map to
learn local features with invariance to translations. Hence, a convolutional layer represents
a discrete convolution over its inputs. Supposing an single input map a 2 RH⇥W , and a
set of weights W 2 RK⇥K , a 2-dimensional discrete convolution is defined as

zij = (a ?W)ij =
KX

m=1

KX

n=1

ai+m,j+nWm,n , (2.8)

where i and j denote indices of the output feature map z. For simplicity, Eq. 2.8 models
the case of a single input feature map and a single output feature map. This process is
depicted in Fig. 2.1. However, since CNNs typically generate multiple feature maps per
layer, Eq. 2.8 has to be adapted to sum contributions of every input feature map into each
output feature map [59], [2].

As in traditional neural networks, output activations of some convolutional layer are being
processed with an elementwise nonlinearity. Between stages of convolutional layers, typi-
cally pooling is applied. It accounts for dimensionality reduction through coarse graining
small local regions within feature maps. One example would be max-pooling, where only
the highest value of each patch in a feature map is retained. This provides some degree
of invariance against geometric distortions and scale. By stacking multiple of such stages
together, higher layers are able to detect high level objects as composition of parts and
textures that were detected at lower layers [59], [2], [46]. A key concept in CNNs is the
receptive field. It describes the pattern-respond region of a feature extractor which defines
the spatial region of an input sample that is being analyzed by a single unit contained in
the last convolutional layer [59].

2.2. Explainable Artificial Intelligence 8

Figure 2.1.: Convolution between two feature maps of consecutive layers, supposing a single
feature map per layer. Depicted is the filter set W , an output activation zij

at location ij within the output feature map, and an input activation aij .

Important parameters in designing convolutional layers include the kernel size K as defined
above, the pooling size, which defines the size of the pooling kernel, as well as the stride
and padding. Padding defines adding extra dimensions at the edges of feature maps and is
depicted in Fig. 2.1. The stride defines the step size by which the weight kernel is shifted
over the input feature maps during convolution. In the absence of padding, increasing the
stride results in smaller output feature maps [4], [6], [63]. After sufficiently many convo-
lutional stages, CNNs typically attach a classification head to the feature extractor. This
classification head is typically composed of several densely connected layers that perform
the decision making on the features extracted by the feature extractor.

2.2. Explainable Artificial Intelligence

XAI aims to reveal the opaque decision strategy of nonlinear ML methods, to provide
trust in the applied systems, access their robustness, and gain insights in the data domain
on which models are applied [24], [27], [30], [21], [32]. A vast amount of post-hoc expla-
nation approaches has been proposed, which can be roughly grouped into local methods
[23], [25], [26], [64], which are able to quantify the importance of input features with re-
spect to model outputs, and global methods [65], that try to extract prototypical examples
for specific output classes [30]. However, this partition is slowly being displaced, due to
new research focusing on extracting richer structured explanations, such as concept-based
explanations, which can be viewed as a combination of local and global XAI [35], [41],
[42], [43], [66]. On the contrary to post-hoc techniques, are self-explaining models. These
approaches propose to inherently design ML models in an interpretable manner [27]. How-
ever, with the aim of explaining existing models, post-hoc explanations are of need.

This chapter focuses on post-hoc explanations for classification settings, i.e., were an input

2.2. Explainable Artificial Intelligence 9

vector xn, composed of several input features according to (xn,i)
dx
i=1, belongs to a specific

target class tn, and a nonlinear classifier is readily trained to predict said class by modeling
the function yn = f(xn). The output yn is often referred to as logit score, which defines
the evidence for the given class tn. The subscript n defines a specific sample contained
some dataset with a total number of N instances.

A popular approach in the realm of global XAI is activation maximization [65]. Through
optimizing an input vector x̃ that maximizes the activation of some neuron of a model,
e.g., an output neuron, this approach is able to uncover interesting insights in how a model
has encoded evidence for some class [65]. However, for a detailed examination of a models
input-output behavior, such as its reactions to specific input samples for validation, the
benefit of prototypical examples is rather limited [27]. In contrast, local XAI accounts for
these shortcomings, yet, has limitations in extracting global explanation factors.

Local XAI constructs explanations by assigning scores to input features, indicating their
relevance for the model prediction [25], [26], [23], [46], [24], [64]. Typically, these so called
relevance scores are visualized within the input domain, e.g., by generating a ‘heatmap’
[67]. This is done by overlaying each feature of an input image with its associated relevance
score. More details about the interpretability of explanations and their quality assessment
are provided in Section 2.2.3.

Famous local explanation techniques include attribution-based methods like Shapley-Values
[25], Integrated Gradients [26], or LRP [23], which are addressed in the next section. An-
other field proposes approaches that explain nonlinear classifiers with local surrogate mod-
els, which are interpretable by design [30]. One such method is the Local Interpretable
Model-agnostic Explanations (LIME) algorithm [24]. LIME defines a model-agnostic XAI
method by relying solely on inputs and corresponding outputs, i.e., it does not depend on
any internals of the ML model to explain. LIME operates by measuring model outputs
for synthetic data points in the neighborhood of the original sample xn, such as perturbed
versions of xn. Simultaneously, a surrogate model is fitted that imitates the original model
locally for a given data point. It is by design interpretable, e.g., a linear classifier [24].

2.2.1. Attribution-based Explanation Techniques

Attribution-based XAI comprises several methodologies. Perturbation-based approaches
such as Shapley-Values [25], are model-agnostic methods that measure feature importance
by occluding sets of input features and simultaneously tracking model outputs. Due to
this ‘indirect’ computation of feature relevances, many perturbation iterations have to be
performed what can result in high computational cost [27], [30].

2.2. Explainable Artificial Intelligence 10

A more direct approach are methods that make use of the gradients in DNNs. For in-
stance, GrandietxInput [64], as its name indicates, computes relevances by multiplying
input features with their associated partial derivatives coming form the output. Extending
this idea, Integrated Gradients [26] starts from some reference point x0

n and integrates
gradients along a straight path to the original input vector xn. This method provides a
more robust setup than just evaluating the gradient of a single point, and captures feature
contributions over an entire trajectory of inputs [26].

Another line of work proposes modified backpropagation processes like LRP [23]. Such
approaches provide a highly efficient redistribution process of relevances, by altering the
gradient computation in neural networks, and determining feature importance within a
single backward pass. However, the benefits associated with these methods come with
comparatively higher complexity regarding their implementation. Since LRP is an impor-
tant part of this study, further elaboration on its framework is detailed in the following.

2.2.1.1. Layer-wise Relevance Propagation

As backpropagation-based explanation technique, LRP is applied to neural networks. It
suggests to redistribute the output, i.e., evidence for some input vector belonging to some
target class, down to the inputs, layer by layer, using purposely designed propagation rules
[23], [68], [69], [70]. The redistribution process is defined to ensure ‘conservation’, meaning
that the total relevance entering a neuron at a given layer has to be passed on to the
connected neurons in direction of the backward pass [23], [69]. A schematic overview of
this redistribution process is shown in Fig. 2.2.

Figure 2.2.: Redistribution process of relevances in a DNN as defined by LRP.

Suppose a DNN with ReLU activations, i.e., a deep rectifier network, modeling the input-

2.2. Explainable Artificial Intelligence 11

output relation y = f(x) for some classification task. This network can be viewed as a
concatenation of layers as defined in Equation 2.4, where each layer is a composition of
neurons of the form

ak = max
⇣
0,
X

0,j
ajwjk

⌘
. (2.9)

Indices j and k define neurons of two consecutive layers, and all contributions of lower layer
activations (aj)j to the activation of neuron ak, are summed up by

P
0,j . For simplification,

the bias term bk, stated in Eq. 2.1, is expressed by the index j = 0, with a0 = 1 and
w0k = bk. The most basic propagation rule to attribute relevances between two layers, is
the LRP-0 rule [23]. It redistributes relevances Rk associated with neurons ak at layer k

onto neuron aj according to

Rj =
X

k

ajwjkP
0,j ajwjk

Rk . (2.10)

Hence, the relevance Rj is determined by a weighted sum, where relevance scores coming
from neurons at layer k are weighted according to the share of the contribution of neuron
aj to the activation of neuron ak. The denominator in Eq. 2.10 serves as normalization
term to ensure the aforementioned conservation property.

Conservation Principle. The conservation property states that
P

j
Rj =

P
k
Rk, what

can be verified by evaluating Eq. 2.10. In absence of neuron biasas, the stronger form of
conservation y =

P
k
Rk is ensured [23].

Depending on the network topology and the choice of layer, some rules are advantageous
over others [69], [70]. For instance, the epsilon rule (LRP-✏), was introduced to provide
robustness against noisy gradients and is often applied to upper layers. It is defined by:

Rj =
X

k

ajwjk

✏+
P

0,j ajwjk

Rk . (2.11)

In this equation, the parameter ✏ has a filtering effect on small, rather irrelevant, relevances.
On the other hand, the gamma rule (LRP-�), is often preferred for lower to middle lay-
ers. It emphasizes positive contributions to provide sparser, more salient, heatmaps. The
redistribution methodology is given by:

Rj =
X

k

ajwjk + �w
+
jkP

0,j ajwjk + �w
+
jk

Rk , (2.12)

where � is a hyperparameter that controls the emphasis of the positive share w
+
jk

of the
weight wjk. The framework of LRP proposes to use different rules for different layers,
utilizing a composite strategy [70], [69].

2.2. Explainable Artificial Intelligence 12

LRP can be developed by the framework of Deep Taylor Decomposition (DTD) [68]. DTD
expresses some relevance Rj by a first-order taylor expansion, locally at neuron aj . De-
pending on the choice of root point for the taylor expansion, different LRP rules can be
derived [68], [69]. This framework is especially useful when deriving LRP rules for new
layer types, as special network topologies need careful adaption of the attribution process.
LRP was already adapted to various types of neural networks including CNNs [23], [32],
[71], [51], Long Short-Term Memory [72], Transformers [73], or even Graph Neural Net-
works [66]. Nevertheless, LRP can also be used to explain other nonlinear ML techniques
through so called ‘neuralization’, which describes the transformation of ML models into
NNs, and applying LRP there [74].

2.2.2. Concept-based Explanation Techniques

As stated in the introduction, concept-based XAI aims to combining global decision con-
cepts with local visualization. Given the novelty of this research field, the array of available
methods is quite small, yet elaborated in the following.

Quatitative Testing with Concept Activation Vectors (TCAV) tests to which extend spe-
cific, user defined concepts are represented in some given class. Thorough the predefinition
of two datasets containing examples of some concept, and examples where this concept is
not present, e.g. the concept ’stripes’ for class zebra, a logistic regression model is trained
on the activations of those datasets extracted from the original model at some layer of in-
terest. A logistic regression model essentially classifies samples as a weighted sum of input
features, by transforming its outputs into probabilities with a sigmoid nonlinearity. After
training, the weights of this classification model are used as so called ‘concept activation
vectors’. Multiplying those with the network gradient obtained for some original sample
of the associated class with respect to the layer of interest, quantifies how strong a concept
is represented in this data point. Extending this idea to a global scale, TCAV calculates
this concept sensitivity for all samples of one class to quantify the global contribution of
some concept.

On the other hand, Concept Relevance Propagation (CRP) proposed by [41], extends the
framework of LRP to directly filter relevances during redistribution conditioned to specific
concepts. To achieve this, so called condition sets ✓ have to be predefined by the user that
represent various concepts. However, as stated in [41], it is possible to configure these sets
automatically. Through controlled masking operations in the backward pass with respect
to some concept ✓k, CRP highlights locally for some input sample feature relevances asso-
ciated with concept ✓k.

2.2. Explainable Artificial Intelligence 13

Another approach called Multidimensional Concept Discovery (MCD), [42], suggests to de-
compose the hidden feature space of neural networks, into linearly independent structures
that define concepts. This is accomplished through a procedure composed of two steps: the
extraction and clustering of feature vectors at some intermediate layer of a DNN, and the
subsequent generation of concept subspaces by performing principal component analysis
on each cluster. This approach also allows to visualize concepts locally at the inputs.

2.2.2.1. Disentangled Relevant Subspace Analysis

DRSA [35], proposes a representation learning objective to extract relevant components
that reassemble the reasoning structure of a DNN for some class. It proceeds by optimizing
orthogonal projection matrices, virtually inserted at some layer of interest, that project
activations onto relevant subspaces. A schematic overview of the subspace mapping, and
filtered relevance propagation is depicted in Fig. 2.3. DRSA can be easily combined with
various attribution-based XAI methods, while keeping their underlying propositions, e.g.,
in the case of LRP, adhering the conservation property. In particular, [35] provide deriva-
tions for the integration of Shapley-Values, Integrated Gradients, and LRP.

Suppose a DNN modeling the function y = f(x) for some input vector x. DRSA assumes
that this input-output relation is composed of a two-step mapping, as depicted in Fig.
2.3. This two-step mapping represents a projection of some input vector x = (xi)

dx
i=1 onto

latent concepts (hk)Kk=1, with k being the index for each subspace, and further to the model
output y. Supposing these subspaces have already been identified, a two-step attribution
process is able to redistribute relevance scores to the inputs by filtering the relevance flow
through some subspace. This can be defined by the subsequent redistribution steps:

(Rk)
K

k=1 = E(y,h) , (2.13)

(Rik)
dx
i=1 = E(Rk,x) . (2.14)

Eq. 2.13 describes the attribution of the model output y onto subspaces h = (hk)Kk=1,
whereas the second propagation step, stated in Eq. 2.14, distributes concept relevance
Rk down to input features (xi)

dx
i=1 by keeping index k. In deduction, Rik determines the

combined contribution of input feature i and concept k to the model prediction.

However, relevant components are initially deeply entangled between neurons of hidden
layers. To extract subspaces that represent distinct concepts, [35] propose to optimize an
orthogonal projection matrix U 2 RD⇥D that defines the mapping from activations onto
latent concepts. This matrix is defined as a concatenation of sub-matrices Uk, determining
the mapping onto some concept k, in the form of

2.2. Explainable Artificial Intelligence 14

Figure 2.3.: This figure shows the virtual layers (Uk)k trained with DRSA. The black
arrows depicts the forward pass of some input sample, resulting in evidence
for some class (here y4 for demonstration purposes). Red arrows define the
relevance flow of the class evidence through relevant concepts. By keeping
the relevance flow disentangled after filtering it through subspaces hk, distinct
explanation components can be visualized at the inputs.

U = (U1|...|Uk|...|UK) , (2.15)

with Uk 2 RD⇥dk , and dk being the dimension of subspace hk. Suppose the virtual layer
is inserted at layer j. The linear mapping from the collection of activations a = (aj)Dj=1

onto subspaces hk is defined by

hk = U
>
k
a . (2.16)

Due to the orthogonality of U , i.e., UU> = ID, activations can be easily recovered by the
inverse mapping. Hence, recovering the original activation is given by

a0 =
XK

k=1
UkU

>
k
a , (2.17)

where a0 denotes the recovered activations.

Through evaluating the relevance redistribution from the consecutive layer in forward pass
direction onto subspaces hk, [35] determine the relevance of concept Rk according to

Rk = (U>
k
a)>(U>

k
c) . (2.18)

The vector c = (cj)Dj is referred to as ‘context vector’, as it models the importance of
some activation according to cj = Rj/a

0
j
. With subspace relevances Rk being defined,

the optimization objective of DRSA proposes to find a matrix U that maximizes concept

2.2. Explainable Artificial Intelligence 15

relevances according to:

maximize
U

Mq

k2{1,...,K}[M
2
n2D[R

+
k,n

(U)]] ,

subject to: UU> = ID .

(2.19)

Note that R+
k,n

denotes the positive relevance of concept k, associated with an input sample
xn with n 2 D, and D denoting the dataset of samples for some class. Further, Mp denotes
a generalized F-mean, with F (t) = t

p. Through setting q < 1, in particular q = 0.5 as
in the original work in [35], a soft-min pooling over concept relevances is introduced that
incentivizes the optimization of concepts with equal importance. On the other hand, M2

n2D
encourages subspaces to align with data points of high relevance.

Since Eq. 2.19 defines a non-convex problem which does not have a closed form solution,
an iterative optimization approach is adapted. By starting from some random matrix U ,
the optimization consist of an alternating application of a gradient ascent step followed by
orthogonality step according to U U(U>U)�1/2.

2.2.3. Evaluating Explanations

Evaluating explanations plays a critical role in the field of XAI that encompasses two core
aspects: delivering human interpretable explanations, and enhancing trust in those by
quantifying their explanatory value [67], [75], [27].

2.2.3.1. Interpretability of Explanations

As mentioned in the introduction, some data domains already offer an intuitively inter-
pretable input space, where explanations can easily be delivered in a humanly comprehen-
sive format. Common techniques in these domains include heatmapping, e.g., overlaying
images with relevances, or highlighting words in text according to their associated relevance
score. However, in many other fields of ML, e.g., time-series classification, visualizing ex-
planations is not as straight forward [76], [77].

However, some approaches pave the way towards transforming explanations to increase hu-
man understandability. For example, [51] propose an extension of LRP for models trained
on waveform audios, to propagate relevances ‘one step further’ than the input domain
into time-frequency space. At this point, explanations can be visualized as heatmaps over
spectrograms.

2.3. Audio Processing 16

2.2.3.2. Assessing Explanation Quality

Having highlighted the significance of human interpretability, evaluating explanations on a
quantitative basis is of similar importance. Before gaining insights through qualitative ex-
amination, the explanatory value of the explanations has to be quantified to provide trust
in those [75]. Depending on the XAI technique, quantitative evaluation methods can have
fundamental impact in their design process, e.g, the choice of propagation rules in LRP [70].

A widely applied metric to quantify explanatory power is pixel-flipping [46], [75]. This
method measures to what extend an extracted explanation aligns with what the models
has actually encoded. In general terms, these approaches operate by occluding input fea-
tures, e.g., pixels in images, from most to least relevant, while simultaneously tracking the
network output for the perturbed inputs. The faster the evidence for the given target class
decreases, the more truthful is the explanation [75], [78].

2.3. Audio Processing

Audio processing represents an essential field of research, as it tries to extract valuable
meanings from sound, which is ever-present real world scenarios. Major research areas
include speech recognition, audio event classification, or MIR such as MGR [8], [15], [11].
Audio processing involves challenging tasks, as audio samples may contain multiple differ-
ent sounds which are often overlayed, resulting in predominantly unstructured time-series
[13] [79] [48]. ML systems applied to audio problems often make use of DL approaches [7],
[18], [16], [13].

2.3.1. Audio Representations

Sound signals naturally occur as continuous waveforms over time, often denoted as x(t),
where t is the time at which the signals value is evaluated. They are complex waveforms,
composed of a superposition of periodic sine-waves, i.e., a Fourier-series [80]. A time-
continuous, periodic waveform can be formally described as

x(t) = A · sin (2⇡ft+ �) , (2.20)

where A is the amplitude, f is the frequency, i.e., the number of complete cycles of the
wave per second, and � the phase of the signal, which defines the offset of the waveforms
initial cycle, typically from the reference point t = 0. However, to work with an audio
signal in a digital environment such as in ML applications, it has to be discretized into
a sequence. This is achieved by sampling values from x(t) at set time points, defined by
the sampling rate fs. The latter is measured in Hertz (Hz), hence it defines the number
of samples captured from the continuous signal per second [80]. Denote such an audio

2.3. Audio Processing 17

sequence as x[n] 2 R, with n 2 Z defining indices of the sample points.

When discretizing a continuous waveform with a sampling rate fs, the highest sound fre-
quency that can be represented by the discretized signal is defined as fs/2. This is called
the Nyquist-frequency (Nyquist-Shannon theorem [81]). Therefore, the higher the sam-
pling rate, the more information is captured by the discretized signal [80]. In consequence,
the sampling rate has two major impacts on audio processing tasks. Firstly, it affects the
dimensionality of an audio sequence what influences processing time. Second, it deter-
mines the size of the frequency spectrum contained in the signal, what in turn can affect
the precision of an ASP system.

Due to the complex nature of raw audio sequences, ASP applications often make use of
other audio representations. These include spectrograms [82], mel-spectrograms [83] or
Mel-Frequency Cepstral Coefficients (MFCC)s [84], to name a few. Those transforms de-
compose an audio signal into its frequency content as it varies over time, to provide a more
detailed representation of the sound information. In the following, two major concepts in
the realm of audio processing are detailed, in particular, the Short-time Fourier Trans-
form (STFT), and the mel scale. Going forward, the term STFT will always refer to the
discrete STFT.

2.3.1.1. Short-Time Fourier Transform

The STFT is able to decompose a discrete, time-dependent signal into frequency com-
ponents over time. Essentially, this is achieved by applying the Discrete Fourier Trans-
form (DFT) to small, usually overlapping, windowed segments that get extracted from
the original signal. The DFT decomposes a discretized signal of finite length into a time
invariant frequency representation. It originates from the continuous-time Fourier Trans-
form (FT) that provides the foundation for decomposing a complex, time-continuous signal
into a Fourier Series [82], [80].

Suppose a discretized signal x[n], and a finite-duration window of length Nw 2 N, with
n 2 Nw, the STFT is defined by

X(n, kf) =

n+Nw/2X

m=n�Nw/2

w[n�m] · x[m] · e�j!kf
m
. (2.21)

In this equation, w[n�m] determines the window function centered at point n, and e
�j!kf

m

is the complex exponential that computes the frequency component. The angular frequency
!kf

, is defined by !kf
= 2⇡

kf

N
, with 0 <= kf <= N

2 , where kf is an index for the frequency
bin evaluated by the DFT. The complex exponential is evaluated at each frequency bin,

2.3. Audio Processing 18

and its relation to sinusoids is defined by the Euler’s formula according to

e
�j!kf = cos!kf

+ j sin!kf
. (2.22)

Subsequently, the resulting signal in Eq. 2.22 can be decomposed into magnitude, i.e.,
amplitude, with

Mag(X(n, kf)) = |X(n, kf)| , (2.23)

and phase, by applying

�(n, kf) = tan�1 =(X(n, kf))

<(X(n, kf))
. (2.24)

In this equation, =(X(n, kf)) and <(X(n, kf)) denote the imaginary, and the real part of
X(n, kf). The original time-domain sequence can be recovered from the complex time-
frequency representation, by applying the inverse STFT [85].

Two important concepts regarding the practical application of the STFT are the window
size, and the hop between each windowed frame. Whereas the hop size defines how many,
and which frames are being analyzed by the STFT, the window size Nw balances the time-
frequency trade-off. The larger the window, the greater the frequency spectrum the signal
gets decomposed into. In consequence, larger windows also include more time-increments
which leads to less time-resolution. Common window functions include the Hamming
window:

w[n] =

8
<

:
0.54� 0.46 cos

⇣
2⇡n
Nw

⌘
for 0  n  Nw � 1

0 otherwise
, (2.25)

or the rectangular window, which multiplies the original signal with 1 for 0  n  Nw� 1,
and with 0 outside of the window. However, by tapering the windowed frames near their
edges towards zero, the Hamming window reduces spectral leakage. The latter results
from discontinuities that arise when multiplying a signal with a finite length window. It
describes a distortion of the frequency spectrum, causing frequencies to spread into other
frequencies [80].

In ASP applications, the 2-dimensional STFT is usually being processed as magnitude, or
power spectrogram, where complex values are being transformed into real valued numbers
with Eq. 2.23. In the case of power spectrograms, all amplitudes are being squared. An
example of a magnitude spectrogram is visualized in the the second column of 2.4.

2.3. Audio Processing 19

2.3.1.2. Mel Scale

The mel scale is typically utilized to transform spectrograms into lower dimensional rep-
resentations, called mel-spectrograms. These are widely used as input features for ASP
applications [84], [15]. Mel-spectrograms focus on perceptually relevant features, and pro-
vide an information-rich representation while compressing the frequency axis of the STFT
[83], [84]. An illustration is given in the third column in Fig. 2.4.

Before explaining the mel scale, it is important to define what pitch is. Pitch is a per-
ceptual quantity which relates to the frequency of a tone; higher pitches correspond to
higher frequencies whereas lower pitches correspond to lower frequencies. Extending this
concept, the mel scale is a perceptual scale of pitches which is based on the psychology
of hearing [83]. It was experimentally created to mimic the human auditory system, and
relates the perceived frequency to the actual measured frequency of a tone, as humans
perceive pitch on a logarithmic-like scale. They are more sensitive to changes in frequency
at lower frequencies than at higher frequencies. It is important to note, that end-to-end
models trained on raw waveform audios learned filter banks that correspond to the mel
scale, verifying its value [15], [86].

To generate a mel-spectrogram, a set of overlapping, triangular filters is applied to a
magnitude spectrogram that group frequencies according to a weighted sum into several
mel bins. A general form of such triangular filters, often referred to as mel filter bank or
mel bank, is depicted in Figure 2.5. A popular method to map frequencies onto the mel
scale is the htk-method, proposed by [87]. It projects frequencies f of a magnitude STFT
onto the mel scale according to

Mel(f) = 2595 · log10(1 +
f

700
) , (2.26)

Subsequently, the mel values Mel(f) are grouped into a predefined number B 2 N of evenly

Figure 2.4.: Different audio representations obtained from a 3 second long music snippet.
Form left to right: waveform audio, magnitude spectrogram, mel-spectrogram,
and log-mel spectrogram with amplitudes scaled according to decibels. Note:
the color bars in the standard spectrogram and mel-spectrogram depict the
amplitudes.

2.3. Audio Processing 20

spaced bins mb 2 B, which are each associated with a triangular filter. These bins define
the frequency ranges from which the squared magnitudes are summed up, resulting in the
final magnitudes per mel bin. The width of each triangular filter for some bin mb, is given
by the center frequencies of the neighboring bins as defined by [fmb�1, fmb+1] [87]. Let the
magnitude spectrogram be defined by X(n, kf), with n denoting some time point within
the spectrogram, and kf being a frequency bin associated with some frequency range. Let
the weight matrix defined by some triangular filter be W , where entry W (kf ,mb) maps
the frequencies of frequency bin kf into mel bin mb. Then, the transformation is defined
by:

M(mb, n) =
X

kf

W (kf ,mb) ·X(n, kf) . (2.27)

Apart from the lower dimensional representation a mel-spectrogram provides, it incor-
porates another benefit for ML applications, especially for CNNs. Every sound typically
consists of a fundamental frequency and harmonics, which are integer multiples of the basis
frequency. When sounds are pitch shifted, i.e., their fundamental frequency is changed, the
harmonics change proportionally. Hence, in standard spectrograms, sounds, e.g., melodies,
that are pitch shifted, result in structures with different relative positions to each other.
Since mel spectrograms are scaled logarithmically, they keep relative harmonic patterns
more consistent [79].

In many cases, amplitudes of mel-spectrograms are additionally projected onto a logarith-
mic scale, e.g., into decibels, forming a log-mel-spectrogram. The decibel scale defines the
ratio between the amplitudes of two sound sources As and Aref as defined by

dB = 20 log10(
As

Aref

) , (2.28)

though the reference value Aref is usually set to 1 in most practical applications. This

Figure 2.5.: General form of the mel filter bank obtained by the htk-method where mi

defines a mel bin. This figure was adapted from [87].

2.3. Audio Processing 21

logarithmic scale also imitates the human auditory system in how it perceives loudness
[13]. A log-mel-spectrogram is visualized on the far right in Fig. 2.4.

2.3.2. Music Information Retrieval

MIR is an interdisciplinary research field that aims at the automated extraction, analysis,
and retrieval of information from music [53]. Applications of MIR include MGR, or mu-
sic tagging, which are particularly important to construct music recommendation systems.
These systems are of increasing importance due to music consumption being mainly digital
nowadays [53], [86], [15]. In consequence, MGR has been thoroughly explored in the recent
years, as it is important to manage, and analyze the tremendous amount of music data on
digital platforms [86]. Specific applications of MGR are structuring data, optimizing music
search, or providing automatic music recommendation systems [15]. MGR can be seen as
a sub-task of music audio tagging, which tries to predict multiple descriptive keywords to
musical excerpts like genre, emotion, or instrument [86], [13].

Originally, MIR challenges were tackled by manually extracting specific features, e.g.,
tempo or pitch, from sound signals, and fitting shallow classifiers like Support Vector Ma-
chines (SVMs) on top for some target task. However, many MIR tasks such as genre
classification and tagging are of subjective nature. This subjectivity suggests that it is
challenging to completely understand the fundamental logic of the problem in order to
develop suitable audio features. For this reason, (‘semi’) end-to-end DL approaches, which
include models trained on waveform-, frequency-, and time-frequency representations, have
shown promising results, as these models infer a purely data driven logic [15]. Thus, MGR
problems are often tackled by employing DL methods such as CNNs, which achieve state-
of-the-art performance [86], [14], [18], [13].

2.3.3. Explaining Music Classifiers

Approaches that interpret models trained on audio classification tasks stress that it is
crucial to extract explanations on a concept level [55], [50], [52]. Additionally, many of
those emphasize the importance of providing audible explanations to enhance human un-
derstandability [88], [89].

SoundLIME (SLIME) [54], is an extension of LIME, hence, a local, model agnostic, ex-
planation method. It operates by segmenting an input sample uniformly in three different
sequences, representing temporal, spectral and time-frequency content. An interpretable
model is then fitted on synthetic samples, which are generated by perturbing features of
the evaluated sequence. Consequently, SLIME is able to pinpoint important regions in
the inputs guiding a models decision. On the contrary, [50] propose AudioLIME for mu-

2.3. Audio Processing 22

sic classification systems, to provide a ‘concept’-based explanation. In this approach, the
definition of locality as defined in the LIME algorithm is changed, and defined by source
separation estimates from some musical piece. Through perturbing these features, i.e.,
sources extracted from some audio, and tracking the model outputs, a surrogate model is
able to reveal which components the model relies on. These components include different
musical elements like bass lines or vocals. However, it is important to note that this ap-
proach is dependent on a source separation system which may introduce artifacts.

Another step towards concept-based explanations for music analysis is done by [52]. In this
work, TCAV is applied to music classification systems. Hereby, the concept datasets are
composed of musical excerpts that represent specific characteristics of music, e.g., ‘bass’ or
‘melody with jumps’. Due to the concepts being represented by sound signals, the expla-
nations can be easily presented as listenable audios. However, constructing such concept
datasets in the domain of music analysis requires high-level domain expertise and can be
time consuming until suitable concepts are found. On the account of this, [52] additionally
propose an unsupervised method to extract concept datasets, yet, this approach is limited
to convolutional rectifier networks. It proceeds by aggregating feature map activations
from a hidden layer for various inputs samples. The activation vectors within this feature
map activations define Concept-Activation Vectors (CAV), that each represent multiple
concepts. To disentangle CAVs and generate concept-CAVs, [52] applies Non-Negative
Tucker Decomposition.

3 | Methodological Setup

This chapter elaborates on the methodological framework used in this study.

3.1. Model

To tackle the audio classification tasks, a DL approach will be trained from scratch. Since
CNNs have shown to achieve high performance on ASP tasks, especially in processing var-
ious types of spectrograms [13], [14], [15], a convolutional neural network architecture is
chosen. Inputs to the model will be transformed into log-mel-spectrograms, providing a
lower dimensional representation with a focus on perceptually relevant features.

The architecture of the employed CNN is inspired by the VGGish network, which has been
successfully applied ASP and MGR tasks [18]. The model consists of a feature extractor,
composed of five convolutional blocks, each comprising one 2-dimensional convolutional
layer, followed by a ReLU activation and a max-pooling layer with kernel size 2⇥2. Build-
ing on prior research, which demonstrated that small kernels are adequate for learning
meaningful representations from data, e.g., the VGG network for image classification [6],
the convolutional layers employ small kernels with a shape of 3 ⇥ 3, zero padding and a
stride of 1. On top of the feature extractor, a classification head with 3 densely connected
layers is added to recognize relations between feature map activations and produce real

Figure 3.1.: Architectural framework of the model

23

3.2. Explanation Setup 24

valued outputs for each class. Specifications such as the number of filters per convolutional
layer, or size (in terms of neurons) of the dense layers, vary depending on the performed ex-
periment, and are provided in Chapter 4. Yet, the aforementioned architectural framework
holds for all models in this study. Fig. 3.1 displays this framework schematically, with fur-
ther specifications such as layer names which are important for the subsequent experiments.

3.2. Explanation Setup

The following sections constitute the core of this work, namely the methodology to optimize
relevant subspaces, the two-step attribution of relevances to extract joint input-concept
heatmaps, and the established pipeline to generate audios from explanations.

3.2.1. Local Attribution

To redistribute relevances, the framework of LRP will be utilized [23]. Apart from its
computational efficiency, LRP has shown to be a powerful tool to gain insights into models
and inputs [23], [33], [31], [71], and was previously successfully applied to ASP systems
[51], [48], [90], [91], [92]. For a detailed elaboration on LRP and its benefits refer to Section
2.2.1.1.

3.2.1.1. Layer-wise Relevance Propagation

Relevance propagation with LRP can be efficiently implemented through gradient com-
putations [69]. To recover, a rearranged version of the epsilon rule that redistributes
relevances onto neuron aj at some layer j, stated in Eq. 2.11, is defined as

Rj = aj ·
X

k

const.z }| {
Rk

✏+
P

0,j ajwjk

wjk

| {z }
gradient computation

, (3.1)

where j and k denote indices for neurons of two consecutive layers, and wjk is the weight
connecting two neurons. The ✏ parameter defines the filter coefficient as described in
Section 2.2.1.1. When substituting the constant term in Eq. 3.1 with some placeholder sk,
the gradient computation is recognizable and given as:

X
k
skwjk =

h
r
⇣X

k
zk(a) · sk

⌘i

j

, (3.2)

with

zk =
X

j
aj · wjk , (3.3)

3.2. Explanation Setup 25

denoting the pre activation of neuron k, where the bias is represented by index aj=0 with
a weight of 1.

Since most state of the art deep learning libraries, such as PyTorch [93] or Tensorflow [94],
are readily equipped with an automatic differentiation engine that keeps track of network
gradients, LRP rules can be efficiently implemented. This is achieved by modifying the
automatic backward pass provided, e.g., the autograd engine in PyTorch. Such modifica-
tions can be implemented by utilizing so called ‘hooks’, which enable researchers to add
custom program code, e.g., additional computations, at specific points in a program. A
solid software package that offers a variety of popular LRP rules which are readily defined
to redistribute relevances in models defined with PyTorch, is Zennit [95]. It implements
the redistribution process by adding forward and backward hooks to individual modules
(i.e., layers) of PyTorch models, to modify the gradient computations in favour of relevance
distribution. For these reasons, it was selected for the attribution processes in this study.

To evaluate appropriate relevance-redistribution strategies, i.e., composite strategies for
LRP, a patch flipping procedure was implemented. Details on these experiments are stated
in Appendix B.1.1.

3.2.2. Disentangled Relevant Subspace Analysis

This section explains the extraction of relevant subspaces with DRSA.

3.2.2.1. Dataset Generation

Let the CNN model the function y = f(xm) for an input sample xm, representing a log-
mel-spectrogram. The index m defines instances contained in the original training set M
for some specific class. Intermediate outputs at some convolutional layer j, are collections
of feature map activations with shape D ⇥H ⇥W , i.e., the number of filters, the height
of the feature map, and the width, respectively. DRSA optimizes subspaces by inserting a
virtual projection layer at layer j, that maps activations onto latent subspaces.

To optimize subspaces, firstly, a dataset is created that is composed of activation vectors
an, and their associated context vectors cn, where n 2 D denote indices for different data
points of the training set for DRSA. One activation vector an, for a given data point
xm, is defined as the collection of activations an = (an,j)Dj=1, sampled at a specific spatial
location p 2 P across feature map activations obtained for xm at some layer of interest
j. Activations are extracted after ReLU. The total number of possible sample locations is
given by P = H ·W . Vectors are then extracted by sampling P

0 2 P random locations for
each pair of activation and relevance maps. To recover, the context vectors are generated

3.2. Explanation Setup 26

by cj = Rj/aj with cj being solely defined for activated neurons, i.e., aj 6= 0, and cj = 0

otherwise. Prior to optimization, activation and context vectors are being normalized
according to

v̂ =
1

4
p
D

vq
Ei,j [v2ij]

, (3.4)

where v is a placeholder for a, or c, respectively [35].

3.2.2.2. Optimization Setup

Following the work in [35], the non-convex optimization problem, stated in Eq. 2.19, is
tackled with an iterative learning procedure by starting from a random orthogonal matrix
U with U 2 RD⇥D. For all experiments conducted, the projection matrix U is equally
grouped into K ‘sub-matrices’ Uk 2 RD⇥dk , defining the projection onto subspace k, with
K denoting the total number of subspaces. Hence, the subspace dimension dk is set to
D/K for all k 2 K. A random orthogonal matrix can be sampled from the ortho-group of
SciPy [96].

The optimization procedure is then performed by iteratively applying a gradient ascent
step, followed by an orthogonalization step. In each iteration, gradients of the objective
are computed with respect to each entry of the projection matrix U . When substituting
the objective of DRSA defined in Eq. 2.19 with J(U), the entries of the projection matrix
are updated by:

Ui,j = Ui,j +
@J(U)

@Ui,j

. (3.5)

To ensure distinctiveness of subspaces, the projection matrix is orthogonalized in each
optimization step following [97], [98], [35], according to

U U(U>U)�1/2
, (3.6)

what assures the orthogonality constraint U>U = ID. To construct the inverse square-root
of U>U , this matrix has to be decomposed. Since U>U defines a real symmetric square
matrix, this can be achieved by eigenvalue decomposition [99]. This matrix factorization
technique is defined by decomposing some matrix A according to

A = S�S
�1

, (3.7)

where S is an invertible matrix containing the eigenvectors of A on its columns, and �

denotes a diagonal matrix containing the associated eigenvalues. After decomposition, the
inverse square-root of A can be constructed as

3.3. Transforming Explanations into Audios 27

A
� 1

2 = S�� 1
2S

�1
, (3.8)

where �� 1
2 defines taking the square-root of each entry on the diagonal of �. Substitut-

ing A with U
>
U in Eq. 3.7, and 3.8, enables the orthogonalization step depicted in Eq. 3.6.

3.2.3. Two-Step Attribution

Having optimized projection matrices Uk at some layer j that map activations an associ-
ated to samples xm onto relevant subspaces hk, a two-step attribution procedure can be
implemented to extract joint input-concept heatmaps. The disentanglement of the rele-
vance flow is performed at layer j during the backward pass. Suppose the forward pass
was already conducted, and relevance scores R

0
j

are readily provided for neurons of layer
j. After constructing the context vector cn, the mapping onto concept relevances Rk,
associated with subspaces hk, is performed according to

Rk = (U>
k
a)>(U>

k
c) . (3.9)

Thereafter, the conditioned relevances Rjk for neurons j at layer j can be extracted with

Rjk =
ajw>

jk
1

✏+
P

j
ajw>

jk
1
Rk , (3.10)

what equals the LRP-✏ rule. By retaining index k of Rjk during the subsequent backward
pass, joint input-concept explanations Rik, with i defining an index for the input features
of xn, are obtained. Further details on the implementation are stated in Appendix B.2.

3.3. Transforming Explanations into Audios

The general outline of the approach is to mask the input mel-spectrogram with the asso-
ciated component heatmap, and generate a listenable audio track from the masked mel-
spectrogram.

To accurately describe the inverse transformation process from heatmaps to sound sig-
nals, the notation of relevances has to be changed for this section. Since relevance scores
get attributed to the input domain, the component heatmaps are in the form of mel-
spectrograms. Let an input mel-spectrogram be M(mb, n), with mb 2 B defining an index
for the mel-bins, and n 2 N denoting the time bins. Let the corresponding collection
of relevance scores, associated with some concept k, be Rk(mb, n). Initially, a mask is
generated from the rectified input-concept heatmap R

+
k
(mb, n), filtering M(mb, n) to only

retain relevant sound elements as highlighted by the component explanation. For mask
generation, a threshold ⌧p was introduced which represents the p-th percentile of the rele-

3.3. Transforming Explanations into Audios 28

vance scores R+
k
(mb, n), to only retain the most salient explanation factors. Subsequently,

Gaussian blur is applied to smooth the resulting mask, what results in a richer sound of
the audios. It follows for the relevance mask R̂

+
k
(mb, n):

R̂
+
k
(mb, n) = max

mb,n
(⌧p, R

+
k
(mb, n)) ⇤Gs . (3.11)

In this equation, Gs denotes a Gaussian kernel that is defined as

Gs(x, y) =
1

2⇡�2
e
�x2+y2

2�2 , (3.12)

where s 2 N defines the size of the square kernel, i.e., the ranges of x and y which are given
by [� s�1

2 ,
s�1
2]. In the practical setup, the standard deviation � of the Gaussian kernel is

set to 1 and the kernel size to 5. The threshold ⌧p sit set according to the 90th-percentile.
Details on the choice of ⌧p are provided in Appendix B.3. Eventually, the input M(mb, n)

is masked according to

Mk(mb, n) = R̂
+
k
(mb, n) ·M(mb, n) , (3.13)

only retaining features related to component k. Subsequently, the magnitude spectrogram
can be approximated with the pseudo-inverse of the weight matrix associated with the mel-
scale used in the forward transformation. Let this weight matrix be defined by W 2 Rkf⇥Mb

with kf defining the frequency bins (see Section 2.3.1.2 for further information). Since W

is usually not square, the inverse mapping from mel- to magnitude-spectrogram involves
calculating a pseudo-inverse W

† of W . This can be solved by calculating a non-negative
least squares solution [100], [101], which is readily implemented by various python libraries,
such as SciPy [96]. For some matrix A 2 RM⇥N , the non-negative least squares problem
is defined as

min
x

kAxj � bjk2 ,

subject to: bjm � 0 8m 2M .

(3.14)

Applying Eq. 3.14 to find a pseudo-inverse A
† 2 RN⇥M , the vector bj defines the j -

th row of the identity matrix IM , hence, xj denotes the m-th row of the pseudo-inverse
A

† 2 RN⇥M . After utilizing Objective 3.14, to construct W †, the reconstructed magnitude
spectrogram can be obtained by:

Xk(n, kf) =
X

mb

W
†(mb, kf) ·Mk(mb, n) . (3.15)

Subsequently, Xk(n, kf) has to be transformed into a time domain signal. Since magnitude
spectrograms have no phase information, usually the Griffin-Lim algorithm [85] is applied.
This method alternates forward and inverse STFTs, to iteratively approximate a waveform

3.3. Transforming Explanations into Audios 29

audio by starting from random phases and subsequently updating those. However, time
domain signals recovered with this algorithm are not optimal and often incorporate a
‘metallic’, or ‘buzzy’ sound [85]. To enable a better quality of the explanation audios, the
phase information �(n, kf) from the original audio corresponding to data point M(mb, n),
is added to the magnitude spectrogram to form a complex STFT. Such approaches were
previously seen in [88], [89]. Hence, it follows for the complex spectrogram:

Zk(n, kf) = Xk(n, kf) + �(n, kf) . (3.16)

Finally, a time domain signal x[n0] can be recovered by applying the inverse STFT with
the overlap-add method [85]. This process essentially recovers segments xn[n0] of the
original signal, by performing the inverse DFT to each frequency vector in Zk(n, kf).
These segments are then added together according to

x[n0] =

P
n
xn[n0]w[n0 � nH]P
n
w2[n0 � nH]

, (3.17)

where w[n0� nH] denotes the window function, with n being the index for each recovered
frame, and H defining the hop size of the analysis window. This equation is defined for
P

n
w

2[n0 � nH] 6= 0. The inverse DFT of a finite length signal is given by

xn[n
0] =

N�1X

kf=0

Zk(n, kf)n · ei2⇡kfn/N , (3.18)

where the index n denotes one column of Zk(n, kf). As a last step, the loudness of each
audio is adjusted to correspond to the root-mean square (RMS) of the magnitudes in the
original musical excerpt. After scaling, amplitude peaks above the maximum amplitude of
the original audio are clamped. The RMS of a sound signal can be computed by

RMS(x) =

vuut 1

N

N�1X

n0=0

x[n0]2 . (3.19)

The transformation process is efficiently implemented using Librosa [102]. Although this
procedure seems rather complex, audios for a set of component explanations of one data
point are generated in less than 1 second.

4 | Experiments

The experiments conducted in this work encompass an audio classification task on synthetic
data and an MGR task on a music dataset, both of which are detailed in the following.
This chapter provides clickable link boxes in the caption of figures, which redirect to a
GitHub webpage that contains audios associated with the content displayed in the figure.
These boxes show the path component which is attached to the URL of the landing page:
https://sharckhai.github.io/drsa-audio-results/. The landing page is linked here:
� .

4.1. Synthetic Data

4.1.1. Data Construction

The synthetic dataset consists of 2 classes, containing 2000 samples each. Each class is
defined by 4 distinct, class specific sound objects that represent rhythmic, and melodic
structures. Each generated audio sample is a superposition of up to 4 class specific audio
objects, 5 random sounds and Gaussian noise with a noise strength of 0.1. Samples are
generated as superpositions of periodic sine-waves with a time length of 1 second, and
a synthetic sample rate of fs = 16000Hz. Randomness is introduced by randomizing
amplitude, phase, frequency, and modulation frequency from predefined ranges. Details
about are stated in Table 4.1.

Table 4.1.: Specifications about class distinctive sound objects in the synthetic dataset are
provided. The columns Frequency and Modulation display ranges, from which
values are sampled at random for each data point. Note: this table only states
some essential parameters of each object. A detailed explanation of the data
generation process is depicted in Appendix D.

Sound object Description Frequency f [Hz] Modulation [Hz]
Class 1 Object 1 Modulating bass [100, 150] [16]

Object 2 Sawtooth increasing [500, 600] [2]
Object 3 Modulating sound [800, 1000] [3, 6]
Object 4 Full-wave rectified sinusoid [3500, 4000] [20]

Class 2 Object 1 Half-wave rectified sinusoid [100, 150] [4, 5]
Object 2 Sawtooth decreasing [500, 600] [2]
Object 3 Melodic structure [800, 1000] [16]
Object 4 Full-wave rectified sinusoid [4000, 4500] [10]

30

4.1. Synthetic Data 31

In the following, a brief introduction into the data generation process is provided. The
fundamental sound of each object is represented by a periodic sine-wave. Suppose some
signal x[n] with n 2 N defining the time points of the signal, and N 2 N determining its
total length. A discrete, periodic waveform is defined as

x[n] = a · sin(
2⇡ · kf · n

N
+ �f) , (4.1)

where �f defines the phase of the signal, a denotes the amplitude, and kf defines the
frequency of the signal according to

f =
kffs

N
. (4.2)

For a time duration of 1 second, it follows N = fs, and Eq. D.2 simplifies to kf = f .
However, the audio objects in this dataset are based on various combinations of Eq. 4.1,
to form richer structured sounds, with, e.g., modulating amplitudes (all sound objects),
subsequent harmonics (sound object 3 in Fig. 4.1), varying sound frequencies (sound object
3 in Fig. 4.2), time masking (sound object 1, and 3, in Fig. 4.1, and 4.2). A detailed
description of the data generation process is given in Appendix D. When transformed in
to log-mel-spectrograms, each data point is of shape 64⇥64. Details about the parameters
of the employed STFT are provided at the very end of Appendix A.1.

Figure 4.1.: Example of one synthetic sample contained in class 1, with each class specific
audio object. Left: final sample with all 4 distinct objects, random sounds,
and noise. �: synthetic/class1

Figure 4.2.: Example of one synthetic sample contained in class 2, with each class specific
audio object. Left: final sample with all 4 distinct objects, random sounds,
and noise. �: synthetic/class2

4.1. Synthetic Data 32

4.1.2. Setup

The model applied to the synthetic data employs the architectural framework stated in
Section 3.1. The convolutional layers contain 8 , 8 , 16 , 16 , and 16 filters, respectively, from
lower to upper layers. The first two dense layers are comprised of 20 neurons each, and
the output layer contains 2 neurons, to produce logit scores for each class. The model was
trained for 40 epochs and achieves a classification accuracy of 99.9% on the synthetic data.
Further details about the optimization setup can be found in Appendix A

Relevances are redistributed by utilizing a composite strategy, which applies the LRP -Flat

rule [33], to Conv1, and the LRP-� rule, with � set to 0.8, to all remaining convolutional
layers. The flat rule equally redistributes the total relevance of some neuron to neurons
of the lower layer. A formal definition is provided in Appendix B.1. Each dense layer
employs the LRP-✏ rule, with ✏ = 1 ⇥ 10�7. For all remaining layers, i.e., activation and
max-pooling layers, relevances are passed to lower layer neurons according to the gradient
of each module. For LRP, the gradient of these layers already implements the intended
behaviour. For instance, in the case of max-pooling layers, a winner-takes-all strategy is
adapted by assigning relevances solely to the largest inputs.

To generate datasets for DRSA, activation and context vector pairs are extracted at P = 16

random locations within the collection of feature map activations for each input sample
xn, with n 2 D. The dataset D defines a subset of the original training set, comprising
500 samples of one class, chosen at random. As a result, the dataset for DRSA consists
of 8000 vector pairs. Optimization is performed for 5000 iterations on 3 different runs
per configuration. Each run is initialized with a different (random) orthogonal matrix U ,
and the best run is kept. Relevant subspaces are optimized at all convolutional layers
throughout the network, for both classes, and a number of K = 4 subspaces. Training of
one configuration takes about 2 minutes of a single Nvidia A100 gpu processor.

4.1.3. Evaluation

The extracted components for 3 different instances of class 1, optimized at Conv3, with K =

4, are displayed in Fig. 4.3. Presented from left to right are the input log-mel-spectrogram,
the standard heatmap obtained with LRP, and the joint input-concept heatmaps. For each
heatmap, the total sum of relevances is stated in its title, where index i is the index for
an input feature with i 2 dx. Furthermore, k 2 K defines the index for subspace. By
summing up the concept heatmaps, the standard heatmap is fully recovered. This is
formally described by:

XD

i=1
Ri =

XK

k=1

XD

i=1
Ri,k , (4.3)

4.1. Synthetic Data 33

verifying the statement in [35], that the standard heatmap can be seen as a coarse graining
of the extracted sub-explanations. This may also be apparent through visual inspection
of Fig. 4.3. To interpret explanation components, Fig. 4.4 recovers examples of of each
sound object contained in class 1. It can be observed that the sub-explanations extracted
with DRSA indeed represent specific sound audio objects. In particular, subspaces 2, 3,
and 4 (specified in the indices within the heatmap titles), correspond to objects 1, 2, and
3, respectively. Subspace k = 1 can be seen as highlighting some higher order relations
between the first 3 audio objects.

Figure 4.3.: Disentangled explanations for synthetic toy class 1 at Conv3. Depicted from
left to right are the log-mel-spectrogram, the associated standard heatmap,
and the component heatmaps for 3 samples of class 1. The total relevance per
heatmap is defined in its title, with Ri,k being the relevance of input feature i

associated with concept k. �: synthetic/explanations/class1

Figure 4.4.: Class specific audio objects of toy class 1. �: synthetic/class1

It is apparent that audio object 4 on the far right in Fig. 4.4, could not be disentangled.
Furthermore, it seems this object was merged into subspace k = 2 with audio object 1.

4.1. Synthetic Data 34

The primary reason for this may be that the model does not rely on this object as much,
while making classification decisions. When inspecting the standard heatmaps, it is in-
deed the case that fewest relevance is associated with this sound signal. In consequence,
it is possible that the importance associated with sound object 4 was outperformed by
the merged concept represented by k = 1. Additionally, the similarity of sound object 4

with the random sounds, added to each sample, is comparatively high. This fact, paired
with observing joint heatmap k = 2, leads to the assumption that the NN already merged
object 4 with other objects, to enhance its classification capabilities. Results for toy class
2 can be found in Appendix C.1.

By performing an audible check of the sub-explanations obtained with DRSA (Fig. 4.3), the
mapping between subspaces and audio objects can be confirmed. In addition, the value
of concept-based explanations becomes evident, when comparing them to the standard
explanation. Whereas the standard explanation conveys all relevant information, it is
hard to tell what the model truly has encoded. The standard explanation sound like a
‘cleaned’ version of the original audio, without noise and random concepts. By listening
to the component audios, a deeper understanding of the encoded concepts is achieved. For
comparison, Fig. 4.3 depicts component heatmaps generated with a random baseline, i.e.,
a random projection matrix U .

Figure 4.5.: Explanation disentanglement for samples of synthetic class 1 with K = 4
random subspaces at Conv3. The samples used for this experiment are the
same as depicted in Fig. 4.3.

4.2. Music Showcase 35

Note. Two aspects must be taken into account during audible verification. Firstly, due to
the ‘laziness’ of how neural networks learn, i.e., NN often focus on prominent features of
objects instead of encoding complete objects, some sounds, especially sound object 2, are
not learned in their complete shape. Rather, striking parts, e.g., the regions with highest
amplitude, are encoded for this object. Secondly, when comparing component audios with
the exemplary sound objects provided in Fig. 4.4, a perfect alignment between subspace
audios and the exemplary sound objects is very unlikely, due to the randomness in fre-
quency and modulation.

4.2. Music Showcase

4.2.1. Setup

For the MGR task, the GTZAN dataset was selected due to its popularity [15] and feasible
size. It is a widely applied dataset for ML applications in the domain of genre recognition,
and is composed of 10 balanced genre classes with 1000 musical excerpts in total. Each
sample incorporates a length of approximately 30 seconds. Audio tracks within this dataset
were accumulated from different sources to ensure diversification in the recording quality,
which include radio, CDs, and .mp3 -files. A description of all genre classes with their
corresponding number of instances, is shown in Table 4.2. Further details about data
preparation and the preprocessing pipeline can be found in Appendix A.1.

Table 4.2.: Classes and samples contained in the GTZAN dataset after dataset pruning.
Some sample got excluded due to distortions.

Pop Metal Disco Reggae Blues Classical Rock Hiphop Country Jazz
99 100 100 100 99 100 100 97 100 100

The CNN applied to perform MGR on the GTZAN dataset, takes 3 second long music
snippets transformed into log-mel-spectrograms, with a shape of 128⇥ 128, as input. The
convolutional layers in the feature extractor comprise 32 , 32 , 64 , 64 , and 128 filters in con-
secutive order from Conv1 to Conv5, and ensure a receptive field that spans the full input
dimensions. Dense layers are composed of 128 , 128 , and 10 neurons. Between dense layers,
dropout is applied with a probability of 0.5, randomly zeroing out 50% of the weights
during each training step. The output layer maps activations onto 10 neurons, producing
real valued outputs, i.e., logit scores, for each class. Additional information about model
training and evaluation are provided in Appendix A.

Following previous works [14], [13], [103], the model is evaluated on a 10-fold cross vali-
dation, and achieves an accuracy of 82.53%. State-of-the-art models achieve around 92%

accuracy on the GTZAN dataset [13], [14], yet, often make use of transfer learning by
utilizing feature extractors pretrained on bigger audio datasets [13], [103].

4.2. Music Showcase 36

Relevances are redistributed by employing a composite strategy. The rule configuration
for the feature extractor can be found in Table 4.3. The gamma-rule is applied according
to Eq. 2.12, and emphasizes positive contributions to provide sparser heatmaps with a
focus on more salient explanations factors. The w

2-rule [68], has its benefits in enhancing
the direct importance of input values, by squaring the magnitude of the weights between
input features and neurons of the first layer. A formal definition of this rule is provided
in Appendix B.1. To each dense layers of the model, LRP-✏ is uniformly applied with
✏ = 1⇥ 10�7.

Table 4.3.: LRP composite for the feature extractor of the MGR model.
Layer LRP rule Rule configuration
Conv1 LRP -w2 -
Conv2 LRP -� � = 0.4
Conv3 LRP -� � = 0.4
Conv4 LRP -� � = 0.2
Conv5 LRP -� � = 0.1

To generate datasets for DRSA, activation and context vectors are extracted at P = 40

random locations in each set of feature map activations. Since DRSA was originally show-
cased on models trained on image data, the practical setup was to sample 20 vectors from
each collection of activations. However, although it is common that objects in images
occur at various locations with different scales, music data typically spreads along time
and frequency dimension of a mel-spectrogram. This allows to sample more locations,
especially if less data is available, as it is the case for the GTZAN dataset. In consequence,
40 activation and context vector pairs got extracted from each collection of activations
of 240 input log-mel-spectrograms of one genre class at the layer of interest, resulting
in a dataset comprised of 9600 such pairs. A number of 240 input log-mel-spectrograms
equals 3 snippets of each musical excerpt contained in the original training set for one class.

Optimization is performed for 5000 iterations on 3 runs per configuration with differ-
ent orthogonal matrices U . Relevant subspaces are optimized at all convolutional layers
throughout the network, for each class, and the best run is kept. Each configuration is
optimized with K = {2, 4, 8} subspaces. Training of one configuration (with 3 runs) takes
about 5 minutes on a single Nvidia A100 gpu processor.

4.2.2. Qualitative Evaluation

The qualitative evaluation of DRSA on the music showcase also focuses on optimization
setups with K = 4 subspaces. These components provided visually the best disentangle-
ment. Examples of components generated with subspaces of other layers can be found in
Appendix C.2. To enhance visual inspection, the color-map of the heatmaps was changed

4.2. Music Showcase 37

for this section, to emphasize smaller relevance scores, i.e., the color intensity of positive
relevances increases faster.

Fig. 4.6, and 4.7 depict explanation components extracted for samples of genre class
hiphop, and jazz respectively. The figures display the original data point, the standard
explanation, and the sub-explanations, where the order defined in the previous section is
kept. The sum of relevance scores is denoted in the title of an explanation, where index
i defines an input feature and k denotes the corresponding subspace. The sum

P
i,k

Ri.k

runs over all input features, and subspaces, representing the total relevance as obtained
with the standard explanation.

Again, it is apparent that the standard explanation is decomposed into several explanatory
components that look spatially distinct. However, to contextualize the joint input-concept
explanations, it is crucial to listen to the corresponding audios. For instance, subspaces
1 and 3, extracted for genre hiphop, represent the vocals and drums respectively. With
‘drums’, a combination of kick drum and snare drum is meant that usually defines the
rhythm of a song, and may be classified as a typical sound element of hiphop music. Sub-
spaces 2 and 4 seem both to highlight the kick drum at low frequencies. For the provided
instances, it is not possible to distinguish those two components. It could be possible
that one of these subspaces also accounts for base lines at low frequencies. For the jazz
case, one may classify subspace k = 1 as corresponding to sounds at high frequencies. In
particular, this subspace seems to represent the cymbal, which is a common instrument
in jazz songs. However, this is hard to verify as this component also picks up noise, i.e.,
subsequent harmonics at high frequencies resulting from the main melody. Components 2,
and 3, resound to the main melody, and low frequencies such as the base line respectively.
Concept 4 is rather hard to interpret without specific domain knowledge. It seems to focus
on some patterns in the main melody.

When comparing component explanations with the standard explanation, especially through
audible inspection, the explanatory value of DRSA is again underpinned. In comparison
to the synthetic data case, the standard explanation seems to be even less informative in
comparison to the extracted concepts. It depicts important information, but the associated
audio sounds like the original song without some melodic patterns.

Interesting concepts were also found for other genres. These include, e.g., a subspace
highlighting the so called ‘chop’, which is a typical element in reggae music. Additionally,
components for genre class metal were found that correspond to e-guitar noise and fast
successive snare drums at high frequencies. Visualizations of the achieved explanation
decomposition on these, and other genres, as well as links to their associated audios, can be

4.2. Music Showcase 38

Figure 4.6.: DRSA results on genre class hiphop for K = 4 subspaces at Conv4. From left
to right: input log-mel-spectrogram, standard heatmap, and the joint input-
concept heatmaps. The value Ri,k defines the relevance associated to input
feature i and concept k. Each row depicts the explanations for an individual
instance. �: gtzan/hiphop

Figure 4.7.: DRSA results on genre class jazz, for K = 4 subspaces at Conv4. The order
of images, and notation within their titles follows Fig. 4.6. �: gtzan/jazz

found in Appendix C.2. Further, it became apparent that some subspaces across different
classes highlight audio objects of similar context. Especially subspaces corresponding to
kick drums or base lines, as depicted in Fig. 4.7 and 4.6, were found for every genre. On
the contrary, decent vocal concepts were only extracted for genre class hiphop and blues.
This observation leads to one main question: Are subspaces really distinctive between
classes, or do they just correspond to specific frequency bands, e.g., low, middle, and high
frequencies. To address this, further experiments have to be conducted, especially on a
quantitative basis.
However, to evaluate this assumption qualitatively, Fig. 4.8 shows sub-explanations gen-

4.2. Music Showcase 39

erated when propagating relevances obtained for jazz music samples through hiphop sub-
spaces. It is apparent that the sub-explanations hardly represent distinct sound elements,
when comparing the results with Fig. 4.7. The decomposition with ‘false’ subspaces looks
rather unstructured in the sense of spatially distinct audio objects. This observation is
verified by listening to the explanations. Furthermore, subspace k = 2, which corresponds
to the kick drum of hiphop samples (see Fig. 4.6), fails to accurately disentangle the low
frequencies of jazz samples. This indicates, that subspaces are indeed class specific and
highlights the benefit of DRSA over dividing explanations according to frequency regions.
Nevertheless, mixing up subspaces of different genres can lead to confusion and needs care-
ful verification for multiple instances. For this reason, a quantitative approach is crucial
for further analysis on the meaningfulness of explanatory components.

Figure 4.8.: Explanations for jazz samples disentangled with K = 4 subspaces at Conv4.
The order of images, and notation within their titles follows Fig. 4.7.
�: gtzan/special-cases

4.2.3. Quantitative Evaluation

For quantitative evaluation, a patch flipping procedure was implemented in a similar fash-
ion as in [35]. As detailed in Section 2.2.3, these approaches typically perturb patches of
features in input samples from most to least relevant, while tracking network outputs of the
altered inputs. The calculated Area under the Pixel-Flipping Curve (AUPC) score mea-
sures how faithful an explanation is. To enhance this method to evaluate the performance
of explanation disentanglement, [35] propose to merge relevant patches given by each joint
heatmap into one mask, before altering an input sample. Formally described, the pertur-
bation mask M ⌧ for perturbation step ⌧ , defines a unification of the masks generated for
each component according to M ⌧ = [K

k=1M
⌧

k
. This means, if several sub-explanations

denote the same patch as most relevant at step ⌧ , i.e., the disentanglement is not optimal,
less features get flipped in the input sample. Hence, this would result in a worse score. To

4.2. Music Showcase 40

Figure 4.9.: Schematic visualization of the patch flipping procedure, implemented to ad-
dress explanation disentanglement. The figure shows the generation process
of a perturbation mask M ⌧ , obtained by unifying component masks M

⌧

k
per-

turbation step ⌧ = 1 for a setup with K = 3 subspaces.

avoid any confusion, an example of the mask generation is depicted in Fig. 4.9.

Suppose a model y = f(x), that outputs class evidence for an input sample x. Assume this
input sample as (xi)dxi=1, where i is an index for a feature contained in x. The AUPC score
is obtained by successively flipping all features i, until the complete sample x is altered.
It is calculated according to

AUPC(U) = E
"

TX

⌧

!(⌧)

f(x(⌧�1))� f(x⌧)

2

!#
, (4.4)

where T denotes the total number of perturbation steps, an altered input sample is de-
noted by x

⌧ , and E describes an expectation over some dataset. The weight !(⌧) 2 (0, 1)

defines the percentage of total features flipped at perturbation step ⌧ . To enhance effi-
ciency, patches of size 16⇥16, comprising 256 input features, are being perturbed. In each
perturbation step, ⌧2 patches are obtained from each component and unified into the final
mask M ⌧ . Patches to perturb are extracted from most to least relevant. Their relevance
score is defined as

P
i
R

(p)
i

, where the superscript p denotes that only relevances of features
i contained in patch p are summed up.

Input patches are occluded through ‘zeroing’, i.e., by replacing each feature xi denoted
by the mask M ⌧ with the value 0. Although in computer vision tasks many works use
generative approaches such as inpainting patches based on their surrounding pixels [104],
it was observed that this introduces spurious correlations for the case of spectrogram clas-
sification. Zeroing features, assures to keep the inherent dynamics of an audio sample.
Furthermore, zeroing is specifically suitable for the models applied in this study because
training samples have been randomly masked by zeroing (refer to Appendix A.2 for clari-
fication). In consequence, the applied models are invariant to patches composed of zeros.

4.2.3.1. Explanation Disentanglement

DRSA is evaluated against two baselines. A random baseline, i.e., a random orthogonal
matrix which is partitioned into K sub-matrices defining each subspace, and an ablation

4.2. Music Showcase 41

of DRSA called Disentangled Subspace Analysis (DSA) [35]. DSA optimizes subspaces by
replacing the context vectors with the activation vectors. Hence, subspaces learned with
this approach align with high activations without taking their ‘context’, i.e., the model
response, into account. Table 4.4 states the achieved AUPC scores of each method, for
an optimization setting with K = 4 subspaces, performed at each convolutional layer
throughout the network. Further, all methods are compared with the patch-flipping score
of the standard attribution, which can be defined as a setting with K = 1 subspace.
Experiments were performed on a balanced test set composed of 1000 samples. Since the
test set only contains 20 audio tracks per class, 5 distinct snippets were extracted from
each of musical excerpt.

Table 4.4.: Patch-flipping scores obtained with K = 4 subspaces at each convolutional
layer throughout the network. The best method for each setup is highlighted
in bold, a lower score is better. Evaluation was performed on a balanced test
set across all classes, containing 1000 samples. Scores were first averaged over
instances and then over classes. The error bars depict the maximum standard
error across methods. (†) denotes the average score across 3 random seeds.

Layer
Conv1 Conv2 Conv3 Conv4 Conv5

Standard attribution (K = 1) 0.975 0.975 0.975 0.975 0.975
Random subspaces† 0.747 0.702 0.625 0.561 0.538
DSA 0.709 0.613 0.596 0.540 0.523
DRSA 0.696 0.599 0.583 0.537 0.534
Error bars (max) ±0.099 ±0.092 ±0.079 ±0.066 ±0.062

In Table 4.4, it is apparent that DRSA achieves the best scores across convolutional lay-
ers 1-4, and is only outperformed by DSA at the last convolutional layer (layer Conv5).
Furthermore, it can be observed that the disentanglement score decreases for higher layers
across all methods. However, DRSA and DSA are closely followed by the random baseline,
especially at higher layers. This is counter intuitive because the qualitative evaluation
on the synthetic data case has shown that the subspaces extracted with DRSA produce
sub-explanations of increased spatial distinctiveness, in comparison to a random baseline.
However, it has to be addressed why these results are just barely represented by the patch-
flipping evaluation. It is possible, that this effect occurs due to components obtained with
random subspaces being distinct on a much smaller scale, e.g., at the scale of single input
features. In consequence, each component mask M

⌧

k
could still define a different patch to

flip, what results in a likewise good AUPC score.

4.2. Music Showcase 42

4.2.3.2. Meaningfulness of Components

As detailed in Section 4.2.2, several components across genres seem to highlight similar
sounds, in particular, often respond to similar frequency bands. Since interpreting ex-
planations in the domain of audio data is not as straight forward as in computer vision
tasks, where explanations can often be easily identified by looking at heatmaps of images,
the question arises if subspaces correspond to distinct audio objects across classes. This
meaningfulness of components, is an important feature that has to be accessed, especially,
when obtaining rather close AUPC scores with a random baseline to the ones obtained
with DRSA.

To recover, in the qualitative evaluation, explanations of jazz samples were decomposed
with subspaces obtained for hiphop music, and it was shown that the disentangled explana-
tions were arguably worse compared to the components extracted with the true subspaces
of the target class. However, such an approach is prone to human bias and inefficient. To
address class distinctiveness of subspaces, and eliminate the possibility of DRSA dividing
explanations according to frequency bands, a more exhaustive patch-flipping evaluation
was performed. In this setup, explanations of one target class c, with c 2 C and C being
the total number of classes, i.e., C = 10, are decomposed C times with subspaces U (c) of
every genre. This setup reveals similarities across classes, and enables an assessment of
class distinctiveness of components.

To quantify the disentanglement of each class for cross-class comparison, the AUPC score
as previously defined is not suitable. This arises from the varying scales of NN outputs
for different classes. The �AUPC score, as proposed by [35], accounts for this issue and is
defined as

�AUPC(U) = AUPC(ID,K=1)�AUPC(U) , (4.5)

where AUPC(ID,K=1) denotes the score obtained with the standard attribution. Sub-
tracting AUPC(U) from AUPC(ID,K=1), accounts for the different scales, and enables a
comparison between classes. In this case, higher scores define better disentanglement.

The cross-class �AUPC scores are displayed in Fig. 4.10, where rows depict the attributed
genre class, and columns determine the subspaces U (c) used to disentangle explanations.
The figure was generated with the same evaluation as used for the patch-flipping procedure
in Section 4.2.3.1. In Fig. 4.10, it is apparent that the highest scores are assigned on
the diagonal. Hence, the best disentanglement performance is obtained by decomposing
explanations of target class c with subspaces U (c), for all c 2 C. This proves the class
distinctiveness of subspaces.

4.2. Music Showcase 43

Figure 4.10.: Depicted are 10 different �AUPC scores for each attributed genre class.
Specifically, explanations according to one target class c are decomposed C

times with the subspaces pertaining to each class c 2 C. The rows state
which class was attributed, while the columns show which subspaces U (c)

were used for explanation decomposition.

Furthermore, it is observable that genre hiphop and classical, when decomposed with their
true subspaces, achieve the best disentanglement across classes. Also, several other in-
sights can be gained through inspecting the cross-class �AUPC plot. In particular, when
inspecting target class rock (seventh row in Fig. 4.10), it is apparent that all scores are
nearby, and close to zero, what denotes no noteworthy improvement against the standard
explanation. Additionally, scores obtained for target class rock using its true subspaces
and subspaces of genre blues, seem to be nearly identical. This reflects findings of faults
contained in the GTZAN dataset, in particular, that genre class rock is prone with misla-
belings, e.g., that it contains several samples of other genres like blues and country [105].

Additional interesting insights can be gained by inspecting most similar or most contradic-
tory data classes. For instance, subspaces extracted for pop and disco music respond least
to jazz music samples (last row). Reggae music achieves the worst �AUPC score when
decomposing its explanations with subspaces extracted for classical music. On the other
hand, samples of genre metal respond most to concepts extracted for blues and rock music
(apart from the metal subspaces). These findings may align with human intuition on genre
similarities, and therefore reflect the meaningfulness of concepts learned with DRSA. For

4.2. Music Showcase 44

comparison, when using a random baseline, the cross-class �AUPC plot would result in
likewise similar colors for all entries of the matrix. However, it is also interesting that these
observations are not reversible. This means that, e.g., explanations for metal music are
best disentangled with blues subspaces, whereas blues samples respond most to subspaces
for country music.

5 | Conclusion
5.1. Main Findings

This study demonstrated the capability of DRSA, to decompose explanations on DL models
applied to audio classification tasks, into meaningful sub-explanations. A detailed pipeline
was introduced to generate listenable explanations, thereby enhancing human understand-
ability and making the results accessible to non-domain experts.

The extracted concept explanations provided superior insights into the reasoning structure
of the DL approach, compared to baselines and standard explanations. This was especially
underpinned through audible inspection of the explanation audios. Standard explanations
mostly represented a sparser version of the input audio, with irrelevant sound objects fil-
tered out, making a detailed interpretation of the explanations difficult. In contrast, disen-
tangled explanations facilitated a deeper understanding of the model’s reasoning structure,
specifically the musical concepts it has encoded to identify a genre. These findings high-
light the value of concept-based explanations for audio data, especially, for scenarios where
audios are of compositional nature.

For the case of MGR, this study revealed that the main definition of ‘genre’ by the applied
DL approaches are intrinsic relations in rhythmic and melodic structures of musical com-
ponents like drums, vocals, or baselines, beyond very specific audio objects like the ‘chop’
in reggae music, or heavy e-guitar noise in metal music. Given the compositional nature of
music, where similar instruments and vocals are common across most genres, this finding
may be applicable to other MGR systems.

Moreover, this work showcased the superiority of concept-based explanations for classifica-
tion models in the domain of audio data, by establishing a pipeline to produce listenable
audio tracks from heatmaps on mel-spectrograms.

5.2. Future Work

In subsequent studies focused on explaining music content analysis systems, it would be
valuable to compare explanatory concepts encoded by an MGR model trained on wave-
form audios with those extracted from models trained in time-frequency domain. Previous
research has shown differences in the decision behaviour of models based on different audio
representations, using local, attribution-based XAI [48], [49]. Furthermore, investigating

45

5.2. Future Work 46

models applied to more specific music classification tasks, such as classifying ‘hits’, i.e.,
popular songs, within a single genre, may lead to interesting insights. In consequence,
extracted concepts could assist in designing appropriate music generation systems. More-
over, applying DRSA to other fields of time-series analysis, like medical forecasting, or
prognostic modelling, could lead to intriguing insights, and discoveries.

In addition, due to the novelty of concept-based XAI, the lack of particularly expressive
evaluation metrics for decomposed explanations has to be addressed. One idea would be,
to utilize metrics that include perceptual context, such as the structural-similarity index.
These metrics could eventually provide more valuable results in quantifying the disentan-
glement and meaningfulness of explanation components.

Bibliography

[1] C.M. Bishop. Neural networks for pattern recognition. Oxford University Press,
USA, 1995.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), p. 436.

[3] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529 (2016), pp. 484–503.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Neural Information Processing Sys-
tems 25 (Jan. 2012). doi: 10.1145/3065386.

[5] Ashish Vaswani et al. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017).
arXiv: 1706.03762.

[6] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015. arXiv: 1409.1556.

[7] Awni Hannun et al. Deep Speech: Scaling up end-to-end speech recognition. 2014.
arXiv: 1412.5567.

[8] Hendrik Purwins et al. “Deep Learning for Audio Signal Processing”. In: CoRR
abs/1905.00078 (2019). arXiv: 1905.00078.

[9] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. In: North American Chapter of the Association for Com-
putational Linguistics. 2019.

[10] Chung-Cheng Chiu et al. State-of-the-art Speech Recognition With Sequence-to-
Sequence Models. 2018. arXiv: 1712.01769 [cs.CL]. url: https://arxiv.org/
abs/1712.01769.

[11] Rohit Prabhavalkar et al. End-to-End Speech Recognition: A Survey. 2023. arXiv:
2303.03329.

[12] Jordi Pons and Xavier Serra. musicnn: Pre-trained convolutional neural networks
for music audio tagging. 2019. arXiv: 1909.06654.

[13] Qiuqiang Kong et al. “PANNs: Large-Scale Pretrained Audio Neural Networks for
Audio Pattern Recognition”. In: CoRR abs/1912.10211 (2019). arXiv: 1912.10211.

[14] Caifeng Liu et al. “Bottom-up Broadcast Neural Network For Music Genre Classi-
fication”. In: CoRR abs/1901.08928 (2019). arXiv: 1901.08928.

[15] Keunwoo Choi et al. A Tutorial on Deep Learning for Music Information Retrieval.
2018. arXiv: 1709.04396.

47

Bibliography 48

[16] Aaron van den Oord et al. WaveNet: A Generative Model for Raw Audio. 2016.
arXiv: 1609.03499 [cs.SD]. url: https://arxiv.org/abs/1609.03499.

[17] Prafulla Dhariwal et al. Jukebox: A Generative Model for Music. 2020. arXiv: 2005.
00341 [eess.AS]. url: https://arxiv.org/abs/2005.00341.

[18] Shawn Hershey et al. “CNN Architectures for Large-Scale Audio Classification”. In:
CoRR abs/1609.09430 (2016). arXiv: 1609.09430.

[19] Eleni Tsalera, Andreas Papadakis, and Maria Samarakou. “Comparison of Pre-
Trained CNNs for Audio Classification Using Transfer Learning”. In: Journal of Sen-
sor and Actuator Networks 10.4 (2021). issn: 2224-2708. doi: 10.3390/jsan10040072.

[20] Wei Dai et al. “Very Deep Convolutional Neural Networks for Raw Waveforms”. In:
CoRR abs/1610.00087 (2016). arXiv: 1610.00087. url: http://arxiv.org/abs/
1610.00087.

[21] David Gunning. “DARPA’s explainable artificial intelligence (XAI) program”. In:
Proceedings of the 24th International Conference on Intelligent User Interfaces. IUI
’19. Marina del Ray, California: Association for Computing Machinery, 2019, p. ii.
isbn: 9781450362726.

[22] Wojciech Samek and Klaus-Robert Müller. “Towards Explainable Artificial Intelli-
gence”. In: CoRR abs/1909.12072 (2019). arXiv: 1909.12072.

[23] Sebastian Bach et al. “On Pixel-Wise Explanations for Non-Linear Classifier De-
cisions by Layer-Wise Relevance Propagation”. In: PLOS ONE 10.7 (July 2015),
pp. 1–46. doi: 10.1371/journal.pone.0130140.

[24] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier”. In: CoRR abs/1602.04938
(2016). arXiv: 1602.04938.

[25] Scott Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model Predic-
tions”. In: (2017). arXiv: 1705.07874.

[26] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep
Networks”. In: (2017). arXiv: 1703.01365.

[27] Wojciech Samek et al. “Explaining Deep Neural Networks and Beyond: A Review of
Methods and Applications”. In: Proceedings of the IEEE 109.3 (2021), pp. 247–278.
doi: 10.1109/JPROC.2021.3060483.

[28] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI): Con-
cepts, Taxonomies, Opportunities and Challenges toward Responsible AI”. In: CoRR
abs/1910.10045 (2019). arXiv: 1910.10045.

Bibliography 49

[29] Sajid Ali et al. “Explainable Artificial Intelligence (XAI): What we know and what is
left to attain Trustworthy Artificial Intelligence”. In: Information Fusion 99 (2023),
p. 101805. issn: 1566-2535. doi: https://doi.org/10.1016/j.inffus.2023.
101805.

[30] Andreas Holzinger et al. “Explainable AI Methods - A Brief Overview”. In: xxAI -
Beyond Explainable AI: International Workshop, Held in Conjunction with ICML
2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers. Ed. by Andreas
Holzinger et al. Cham: Springer International Publishing, 2022, pp. 13–38. isbn:
978-3-031-04083-2. doi: 10.1007/978-3-031-04083-2_2.

[31] Lorenz Linhardt, Klaus-Robert Müller, and Grégoire Montavon. “Preemptively prun-
ing Clever-Hans strategies in deep neural networks”. In: Information Fusion 103
(Mar. 2024), p. 102094. issn: 1566-2535. doi: 10.1016/j.inffus.2023.102094.

[32] Christopher J. Anders et al. “Analyzing ImageNet with Spectral Relevance Analysis:
Towards ImageNet un-Hans’ed”. In: CoRR abs/1912.11425 (2019). arXiv: 1912.
11425.

[33] Sebastian Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing
What Machines Really Learn”. In: CoRR abs/1902.10178 (2019). arXiv: 1902 .

10178.

[34] Leander Weber et al. “Beyond explaining: Opportunities and challenges of XAI-
based model improvement”. In: Information Fusion 92 (2023), pp. 154–176. issn:
1566-2535. doi: https://doi.org/10.1016/j.inffus.2022.11.013.

[35] Pattarawat Chormai et al. “Disentangled Explanations of Neural Network Predic-
tions by Finding Relevant Subspaces”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2024), pp. 1–18. issn: 1939-3539. doi: 10.1109/tpami.
2024.3388275.

[36] Hung Nguyen. “A Survey on Explainable Artificial Intelligence: Techniques, XAI-
based Model Improvement Methods, Applications”. In: (Apr. 2024). doi: 10.13140/
RG.2.2.20608.65289.

[37] Huawei Sun et al. Utilizing Explainable AI for improving the Performance of Neural
Networks. 2022. arXiv: 2210.04686.

[38] Ribana Roscher et al. Explainable Machine Learning for Scientific Insights and
Discoveries. 2020. doi: 10.1109/ACCESS.2020.2976199.

[39] Frederick Klauschen et al. “Toward Explainable Artificial Intelligence for Precision
Pathology”. In: Annual Review of Pathology: Mechanisms of Disease 19 (Oct. 2023).
doi: 10.1146/annurev-pathmechdis-051222-113147.

[40] Bolei Zhou et al. “Interpretable Basis Decomposition for Visual Explanation”. In:
Proceedings of the European Conference on Computer Vision (ECCV). Sept. 2018.

Bibliography 50

[41] Reduan Achtibat et al. “From attribution maps to human-understandable explana-
tions through Concept Relevance Propagation”. In: Nature Machine Intelligence 5.9
(Sept. 2023), pp. 1006–1019. issn: 2522-5839. doi: 10.1038/s42256-023-00711-8.

[42] Johanna Vielhaben, Stefan Blücher, and Nils Strodthoff. Multi-dimensional concept
discovery (MCD): A unifying framework with completeness guarantees. 2023. arXiv:
2301.11911.

[43] Been Kim et al. Interpretability Beyond Feature Attribution: Quantitative Testing
with Concept Activation Vectors (TCAV). 2018. arXiv: 1711.11279.

[44] Amirata Ghorbani et al. Towards Automatic Concept-based Explanations. 2019.
arXiv: 1902.03129 [stat.ML]. url: https://arxiv.org/abs/1902.03129.

[45] Grégoire Montavon, Mikio Braun, and Klaus-Robert Müller. “Kernel analysis of
deep networks”. In: Journal of Machine Learning Research 12 (2011), pp. 2563–
2581.

[46] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional
Networks”. In: CoRR abs/1311.2901 (2013). arXiv: 1311.2901.

[47] Bob L. Sturm. “A Simple Method to Determine if a Music Information Retrieval
System is a “Horse””. In: IEEE Transactions on Multimedia 16.6 (2014), pp. 1636–
1644. doi: 10.1109/TMM.2014.2330697.

[48] Annika Frommholz et al. XAI-based Comparison of Input Representations for Audio
Event Classification. 2023. arXiv: 2304.14019.

[49] Sören Becker et al. “Interpreting and Explaining Deep Neural Networks for Classi-
fication of Audio Signals”. In: ArXiv abs/1807.03418 (2018).

[50] Verena Haunschmid, Ethan Manilow, and Gerhard Widmer. “audioLIME: Listen-
able Explanations Using Source Separation”. In: CoRR abs/2008.00582 (2020).
arXiv: 2008.00582.

[51] “Explainable AI for time series via Virtual Inspection Layers”. In: Pattern Recogni-
tion 150 (2024), p. 110309. issn: 0031-3203. doi: https://doi.org/10.1016/j.
patcog.2024.110309.

[52] Francesco Foscarin et al. Concept-Based Techniques for "Musicologist-friendly" Ex-
planations in a Deep Music Classifier. 2022. arXiv: 2208.12485 [cs.SD]. url:
https://arxiv.org/abs/2208.12485.

[53] Ayush Patwari et al. “Semantically Meaningful Attributes from Cowatch Embed-
dings for Playlist Exploration and Expansion”. In: International Society for Music
Information Retrieval Conference. 2020.

Bibliography 51

[54] Saumitra Mishra, Bob L. Sturm, and Simon Dixon. “Local Interpretable Model-
Agnostic Explanations for Music Content Analysis”. In: International Society for
Music Information Retrieval Conference. 2017. url: https://api.semanticscholar.
org/CorpusID:795766.

[55] Saumitra Mishra et al. “Reliable Local Explanations for Machine Listening”. In:
2020 International Joint Conference on Neural Networks (IJCNN). 2020, pp. 1–8.
doi: 10.1109/IJCNN48605.2020.9207444.

[56] Andreas Theissler et al. “Explainable AI for Time Series Classification: A Review,
Taxonomy and Research Directions”. In: IEEE Access 10 (2022), pp. 100700–100724.
doi: 10.1109/ACCESS.2022.3207765.

[57] Jürgen Schmidhuber. “Deep Learning in Neural Networks: An Overview”. In: CoRR
abs/1404.7828 (2014). arXiv: 1404.7828.

[58] Chung-Cheng Chiu et al. “State-of-the-art Speech Recognition With Sequence-to-
Sequence Models”. In: CoRR abs/1712.01769 (2017). arXiv: 1712.01769.

[59] Yann LeCun et al. “Object Recognition with Gradient-Based Learning”. In: Shape,
Contour and Grouping in Computer Vision. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 319–345. isbn: 978-3-540-46805-9. doi: 10.1007/3- 540-

46805-6_19.

[60] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[61] F. Rosenblatt. “The perceptron: A probabilistic model for information storage and
organization in the brain.” In: Psychological Review 65.6 (1958), pp. 386–408. issn:
0033-295X. doi: 10.1037/h0042519.

[62] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning rep-
resentations by back-propagating errors”. In: Nature 323 (1986), pp. 533–536.

[63] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/
1512.03385 (2015). arXiv: 1512.03385.

[64] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning important
features through propagating activation differences”. In: Proceedings of the 34th In-
ternational Conference on Machine Learning - Volume 70. ICML’17. Sydney, NSW,
Australia: JMLR.org, 2017, pp. 3145–3153.

[65] Anh Nguyen et al. Synthesizing the preferred inputs for neurons in neural networks
via deep generator networks. 2016. doi: 10.48550/ARXIV.1605.09304.

[66] Thomas Schnake et al. “XAI for Graphs: Explaining Graph Neural Network Pre-
dictions by Identifying Relevant Walks”. In: CoRR abs/2006.03589 (2020). arXiv:
2006.03589.

Bibliography 52

[67] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency Maps. 2014.
arXiv: 1312.6034.

[68] Grégoire Montavon et al. “Explaining NonLinear Classification Decisions with Deep
Taylor Decomposition”. In: CoRR abs/1512.02479 (2015). arXiv: 1512.02479.

[69] Grégoire Montavon et al. “Layer-Wise Relevance Propagation: An Overview”. In:
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Ed. by
Wojciech Samek et al. Cham: Springer International Publishing, 2019, pp. 193–209.
isbn: 978-3-030-28954-6. doi: 10.1007/978-3-030-28954-6_10.

[70] Maximilian Kohlbrenner et al. “Towards best practice in explaining neural network
decisions with LRP”. In: CoRR abs/1910.09840 (2019). arXiv: 1910.09840.

[71] Wojciech Samek et al. “Explaining the Decisions of Convolutional and Recurrent
Neural Networks”. In: Mathematical Aspects of Deep Learning. Ed. by Philipp Grohs
and Gitta Kutyniok. Cambridge University Press, 2022, 229â€“266. doi: 10.1017/
9781009025096.006.

[72] Leila Arras et al. “Explaining and Interpreting LSTMs”. In: Explainable AI: Inter-
preting, Explaining and Visualizing Deep Learning. Ed. by Wojciech Samek et al.
Vol. 11700. Lecture Notes in Computer Science. 2019, pp. 211–238. doi: 10.1007/
978-3-030-28954-6_11.

[73] Ameen Ali et al. “XAI for Transformers: Better Explanations through Conserva-
tive Propagation”. In: ICML. Vol. 162. Proceedings of Machine Learning Research.
PMLR, 2022, pp. 435–451.

[74] Jacob R. Kauffmann, Klaus-Robert Müller, and Grégoire Montavon. “Towards ex-
plaining anomalies: A deep Taylor decomposition of one-class models”. In: Pattern
Recognit. 101 (2020), p. 107198.

[75] Wojciech Samek et al. “Evaluating the visualization of what a Deep Neural Network
has learned”. In: CoRR abs/1509.06321 (2015). arXiv: 1509.06321.

[76] Andreas Theissler et al. “Explainable AI for Time Series Classification: A Review,
Taxonomy and Research Directions”. In: IEEE Access 10 (2022), pp. 100700–100724.
doi: 10.1109/ACCESS.2022.3207765.

[77] Ziqi Zhao et al. Interpretation of Time-Series Deep Models: A Survey. 2023. arXiv:
2305.14582.

[78] Stefan Blücher, Johanna Vielhaben, and Nils Strodthoff. Decoupling Pixel Flipping
and Occlusion Strategy for Consistent XAI Benchmarks. 2024. arXiv: 2401.06654.

Bibliography 53

[79] Aurora Linh Cramer et al. “Look, Listen, and Learn More: Design Choices for
Deep Audio Embeddings”. In: ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2019, pp. 3852–3856. doi:
10.1109/ICASSP.2019.8682475.

[80] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals & systems (2nd
ed.) USA: Prentice-Hall, Inc., 1996. isbn: 0138147574.

[81] C.E. Shannon. “Communication in the Presence of Noise”. In: Proceedings of the
IRE 37.1 (Jan. 1949), pp. 10–21. doi: 10.1109/jrproc.1949.232969.

[82] J.B. Allen and L.R. Rabiner. “A unified approach to short-time Fourier analysis
and synthesis”. In: Proceedings of the IEEE 65.11 (1977), pp. 1558–1564. doi: 10.
1109/PROC.1977.10770.

[83] S. S. Stevens, John E. Volkmann, and Edwin B. Newman. “A Scale for the Measure-
ment of the Psychological Magnitude Pitch”. In: Journal of the Acoustical Society
of America 8 (1937), pp. 185–190.

[84] S. Davis and P. Mermelstein. “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences”. In: IEEE Transac-
tions on Acoustics, Speech, and Signal Processing 28.4 (1980), pp. 357–366. doi:
10.1109/TASSP.1980.1163420.

[85] D. Griffin and Jae Lim. “Signal estimation from modified short-time Fourier trans-
form”. In: ICASSP ’83. IEEE International Conference on Acoustics, Speech, and
Signal Processing. Vol. 8. 1983, pp. 804–807. doi: 10.1109/ICASSP.1983.1172092.

[86] Keunwoo Choi, George Fazekas, and Mark Sandler. Automatic tagging using deep
convolutional neural networks. 2016. arXiv: 1606.00298.

[87] Steve Young et al. The HTK book. Jan. 2002.

[88] John R. Hershey et al. “Deep clustering: Discriminative embeddings for segmenta-
tion and separation”. In: CoRR abs/1508.04306 (2015). arXiv: 1508.04306. url:
http://arxiv.org/abs/1508.04306.

[89] Francesco Paissan, Cem Subakan, and Mirco Ravanelli. Posthoc Interpretation via
Quantization. 2023. arXiv: 2303.12659 [cs.AI]. url: https://arxiv.org/abs/
2303.12659.

[90] Lauréline Perotin et al. “CRNN-Based Multiple DoA Estimation Using Acoustic
Intensity Features for Ambisonics Recordings”. In: IEEE Journal of Selected Topics
in Signal Processing 13 (2019), pp. 22–33.

[91] Sören Becker et al. “Interpreting and Explaining Deep Neural Networks for Classi-
fication of Audio Signals”. In: CoRR abs/1807.03418 (2018). arXiv: 1807.03418.

Bibliography 54

[92] Changhong Wang, Vincent Lostanlen, and Mathieu Lagrange. “Explainable audio
Classification of Playing Techniques with Layer-wise Relevance Propagation”. In:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.
10095894.

[93] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019. arXiv: 1912.01703.

[94] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015.

[95] Christopher J. Anders et al. “Software for Dataset-wide XAI: From Local Explana-
tions to Global Insights with Zennit, CoRelAy, and ViRelAy”. In: arXiv:2106.13200
(2021).

[96] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[97] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Component Analysis.
Vol. 26. June 2001. isbn: 9780471405405. doi: 10.1002/0471221317.

[98] Jan Stühmer, Richard E. Turner, and Sebastian Nowozin. Independent Subspace
Analysis for Unsupervised Learning of Disentangled Representations. 2019. arXiv:
1909.05063.

[99] Gilbert Strang. Linear algebra and its applications. Belmont, CA: Thomson, Brook-
s/Cole, 2006.

[100] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. Society
for Industrial and Applied Mathematics, 1995, pp. 36–40.

[101] Rasmus Bro and Sijmen Jong. “A Fast Non-negativity-constrained Least Squares
Algorithm”. In: Journal of Chemometrics 11 (Sept. 1997), pp. 393–401.

[102] Brian McFee et al. “librosa: Audio and music signal analysis in python”. In: Pro-
ceedings of the 14th python in science conference. Vol. 8. 2015.

[103] Daisuke Niizumi et al. Masked Modeling Duo: Learning Representations by Encour-
aging Both Networks to Model the Input. 2023. arXiv: 2210.14648.

[104] Alexandru Telea. “An Image Inpainting Technique Based on the Fast Marching
Method”. In: Journal of Graphics Tools 9.1 (2004), pp. 23–34. doi: 10 . 1080 /

10867651.2004.10487596.

[105] Bob L. Sturm. “The GTZAN dataset: Its contents, its faults, their effects on eval-
uation, and its future use”. In: CoRR abs/1306.1461 (2013). arXiv: 1306.1461.

Bibliography 55

[106] Jeff Hwang et al. TorchAudio 2.1: Advancing speech recognition, self-supervised
learning, and audio processing components for PyTorch. 2023. arXiv: 2310.17864.

[107] Janne Spijkervet. Spijkervet/torchaudio-augmentations. 2021. doi: 10.5281/ZENODO.
4748582.

[108] Thorsteinn S. Rögnvaldsson. “A Simple Trick for Estimating the Weight Decay
Parameter”. In: Neural Networks. 1996.

A | Model Details and Training Info

The CNNs as well as the preprocessing pipeline are implemented within the deep learning
framework PyTorch [93]. In subsequent references to ‘the model’, it always refers to the
MGR model. Details about the model applied to the synthetic data will be explicitly
mentioned.

A.1. Data Preprocessing

This section provides information about the data preprocessing of the GTZAN dataset.
The preprocessing pipeline is also partly used for the synthetic data. Specifications regard-
ing the synthetic case are provided at the very end of this section.

The model is trained to classify log-mel-spectrograms generated from 3 second long snip-
pets, which are extracted from the original musical excerpts that have a duration of 29 -30
seconds. The audio length of 3 seconds is chosen to reduce the input dimension while
avoiding information loss when generating the STFT. As stated in Section 2.3.1.1, the
dimensions are adjustable through certain parameters like the window size and hop size.
However, the choice of these parameters can affect either time or frequency resolution.
For instance, transforming audio signals with a duration of 30 seconds into spectrograms,
would either result in very high dimensional representations, or significant loss in time
resolution. Additionally, slicing audios into smaller chunks enhances the dataset size.

Each excerpt contained in the dataset was preemptively downsampled from 22050,Hz to
16000Hz, which reduces the Nyquist-frequency from 11025Hz to 8000Hz. This also facil-
itates more comprehensive explanations in the form of listenable audio tracks, since high
frequencies are harder to discern for humans [83]. During dataset inspection, some faults
were identified, e.g. parts within audios comprised of zeros. Such samples (in total 5) got
excluded.

The general framework of the preprocessing pipeline involves transforming waveform au-
dios into time-frequency domain, and applying various augmentation techniques at different
stages. The implementation employs the Torchaudio module from PyTorch, which offers
a wide variety of audio processing functionalities with enhanced efficiency [106]. Each step
of the processing workflow is detailed in the following.

I

A.1. Data Preprocessing II

Table A.1.: Data augmentation during model training

Augmentation Probability Randomized Parameter Range
Gain 0.5 Gain value [dB] [�12, 3]
Pitch shift 0.3 Tones [�12, 12]

High- or lowpass 0.4 Cutoff frequency high [Hz] [200, 1400]
Cutoff frequency low [Hz] [1400, 4000]

Gaussian noise 0.3 Signal-to-Noise ratio [0.001, 0.1]

Initially, a full length audio excerpt is loaded into memory. During training, a single
3 second long slice is extracted from some excerpt at a random location. Suppose the
resulting audio sequence as x[n] with n 2 N , where N defines the total number of discrete
time steps that compose the waveform. With a given sample rate of fs = 16000Hz and
a time length 3 s, the resulting audio sequence includes 48000 amplitude values. Initially,
normalization by peak is performed according to

y[n] =
x[n]

maxn(|x[n]|)
. (A.1)

This a common choice for ASP applications, as it scales amplitudes within the range of
[�1, 1], while preserving the dynamic range, i.e., the ratio between loudest and softest
parts. After normalization, y[n] is transformed by various data augmentation techniques
to improve generalization. Each augmentation is applied based on a set probability, and
the parameters configuring each technique are randomly selected within predefined ranges.
Augmentations and the associated parameters are depicted in Table A.1 in the same exact
order as they are applied to the data samples. These transformations were implemented
with the external package Torchaudio-Augmentations [107].

Subsequently, the waveform is transformed by the STFT into time-frequency space as
outlined in Eq. 2.21, utilizing a Hamming-window (Eq. 2.25). The window spans 800 time
steps, which corresponds to a time duration of 50ms. With a hop size of 360 time points
(which equals 22.5ms), the resulting complex spectrogram X(n0

, kf), with n
0 2 N

0 and
kf 2 Kf , is composed of N 0 = 128 time bins, and Kf = 399 frequency bins. At this point,
time stretching is applied with a stretching factor randomly sampled within the range
[0.8, 1.2]. Thereafter, the stretched representation is either zero padded up to N

0 = 128

time bins, in case of a speed up, or frequency bins are discarded after the 128th time bin.
Eventually, the frequency bins of the associated magnitude spectrogram |X(n0

, kf)| are
projected onto the mel scale according to Eq. 2.27, and grouped into Mb = 128 mel bins.
The result is a mel-spectrogram M(mb, n

0) with mb 2 Mb, comprising a final input shape
of 128⇥ 128. Further, amplitudes are mapped onto the log10 scale with

A.2. Model Optimization III

M(mb, n
0) = log10(M(mb, n

0) + 1⇥ 10�7) . (A.2)

Values below a log10-amplitude of �4 are clamped, which is chosen due to very few samples
incorporating distorted values. With this pipeline, i.e., normalizing waveforms by peak,
and taking the log10, ensures all samples lie within a range of about [�4, 3] by leaving their
dynamics unchanged. In particular, the mean amplitude averaged across all instances in
the dataset is µA = �0, 378, with a standard deviation of �A = 0, 326. Finally, time
and frequency masking is applied by zeroing out one segment per dimension. Masks are
generated at random with a maximum width of 20 bins per dimension. All augmentations
discussed are applied solely during the training phase. In the evaluation phase, it is cru-
cial to avoid introducing randomness to guarantee consistent and reliable results. Hence,
instead of of extracting one random snippet per sample, each full-length audio excerpt is
divided into 10 segments of 3 seconds each, ensuring that all validation data is utilized in
each epoch.

Note. Spectrograms generated by most python libraries are ‘upside down’, i.e. the fre-
quency bins corresponding to the lowest frequencies are located at the top of the two-
dimensional representation. When visualizing spectrograms, the frequency axis is usually
flipped. This applies also to this work.

Synthetic data. Synthetic samples are preprocessed with the same pipeline used for
the music showcase, yet, without the waveform augmentations state in Table A.1. Fur-
thermore, synthetic samples are transformed into a log-mel-spectrogram by employing a
window size of 400 time points, a hop size of 240, and 64 mel bins. The resulting data
points are of shape 64⇥ 67, where the last 3 time bins get discarded to obtain the square
shape 64⇥ 64.

A.2. Model Optimization

The model was trained to optimize the categorical cross-entropy, which is a common choice
for multi-class classification problems [60]. Let the CNN represent the function yn,c =

f✓(xn,c), with ✓ denoting the learnable parameters of the network, and xn,c denotes an
input sample out of the total number of instances N , contained in the training set of class
c. The cross-entropy loss can be computed with

Err(✓) = � 1

N

CX

c=1

NX

n=1

yn,c · log hc(f✓(xn)) , (A.3)

where the sum
P

C

c=1 runs over all classes C, and hc(·) defines the network output for class
c according to a softmax activation over the output neurons. The latter function is defined

A.3. Model Evaluation IV

as

hc(f✓(xn)) =
exp(f✓(xn)c)P

C

c0=1 exp(f✓(xn)c0)
, (A.4)

where f✓(xn)c defines the network output for some class c. Furthermore, L2-regularization
is applied during optimization, to penalize parameters ✓ for growing too large [108]. This
is achieved by adding the L2-norm to the total error, as defined by:

Err(✓) = Err(✓) + �k✓k22 . (A.5)

In Eq. A.5, � denotes the weight decay parameter which is set to 1 ⇥ 10�4 for model
training. Training is performed by utilizing the ADAM optimizer provided by PyTorch,
with a learning rate of 4⇥ 10�4.

Synthetic data case. The model applied to the synthetic data is trained with a learning
rate of 1⇥ 10�3, without weight decay. Everything else aligns with the optimization setup
utilized for the music showcase.

A.3. Model Evaluation

The training curves of the MGR model are shown in Fig. A.1. It is observable that the
validation loss slightly increases after epoch 500. However, this is acceptable due to the
validation accuracy still improving. This increase in the loss is most likely a result of the
model getting more confident about its predictions, i.e. producing higher outputs which
can also lead to higher losses. Furthermore, Fig. A.2 displays a confusion matrix depicting
the averaged classification accuracy per class on its diagonal. Additionally, as mentioned
in the qualitative evaluation in Section 4.2.2, the rather low classification accuracy of genre
rock aligns with the findings by [105], that class rock is prone with mislabelings. Further-
more, some similarities with the cross-class �AUPC plot in Section 4.2.3 are apparent,
reflecting that relevant subspaces align with what the model has actually learned.

A.3. Model Evaluation V

Figure A.1.: Training curves during model optimization on the music showcase, averaged
over 10 folds. Left: training and validation accuracy. Right: training and
validation loss.

Figure A.2.: Confusion matrix depicting the class-wise accuracy on its diagonal, averaged
across 10 folds.

B | Implementation Details

The code for all experiments performed in this work is provided at:
https://github.com/sharckhai/drsa-audio

B.1. Layer-wise Relevance Propagation

LRP-w
2

rule [68]. Let Rj , and Rk define the relevance scores of neurons located in two
consecutive layers. The w

2-rule is given by

Rj =
X

k

wjkP
j
wjk

Rk , (B.1)

with wjk being the weight connecting neurons aj , and ak. The sums
P

j
and

P
k

run over
all neurons contained in layer j and k respectively.

LRP-Flat rule [33]. The flat-rule redistributes all relevance equally onto neurons of lower
layers to provide providing smooth heatmaps. It is defined by

Rj =
X

k

1P
j
1
Rk . (B.2)

Practical consideration. The redistribution process is implemented within the function
compute_relevances in attribute.py, which is located in cxai/xai. To allow relevance
redistribution for batches containing instances of all classes, an output modifier function
was implemented (lrp_output_modifier in attribute.py). This functionality is particu-
larly useful for patch flipping evaluations, as heatmaps for samples of different classes can
be generated simultaneously.

B.1.1. Evaluating Local Explanations

To access the explanation performance of LRP to accurately design LRP-composites for
the employed models, a patch-flipping procedure was utilized. It is essentially similar to
the algorithm defined in Section 4.2.3, yet, with the number of subspaces K set to 1. A
standard heatmaps is then defined as the component heatmap k = 1, and the unification
of perturbation masks is omitted by M ⌧ =

P1
k=1M

⌧

k
. Results of different patch-flipping

evaluations for the model on the music showcase are depicted in Fig. B.1.

VI

B.2. Two-step Attribution and Disentangled Explanations VII

Figure B.1.: Patch-flipping evaluation of LRP on the music showcase. Left: uniform LRP-�
across all convolutional layers. Right: decreasing � for subsequent convolu-
tional layers, where the maximum �-value is displayed. Both configurations
apply LRP-w2 to Conv1, and LRP-✏ with ✏ = 1⇥10�7 to all dense layers. For
the random baseline, patches are flipped at randomly instead of taking their
total relevance as measurement. Evaluation was performed on a balanced
dataset comprising 200 log-mel-spectrograms contained in the validation set.
The best score is achieved for the decreasing � configuration (highlighted in
yellow), with an initial value of 0.4 (lower score is better). Details on the
exact rule-setup are provided in Table 4.3.

B.2. Two-step Attribution and Disentangled Explanations

B.2.1. Optimization of Subspaces

The optimization algorithm of DRSA is implemented in drsa.py. Learning curves for
K = 4 subspaces, optimized at layer Conv4 are displayed in Fig. B.2.

Figure B.2.: Learning curves of DRSA for K = 4 subspaces, optimized at layer Conv4.

B.3. Audios from Explanations VIII

B.2.2. Two-step Attribution

The redistribution process is implemented in the class Explainer in explain.py, which
is located in the sub-directory cxai/xai/. It starts by repeating each data point in the
batch K + 1 times, to be able to extract the standard heatmap, and all joint heatmaps
within a single forward and backward pass. Suppose a data point as xn. After repetition,
all instances of one individual data point are defined by xn,m with m 2 K + 1. During
the backward pass, concept relevances (Rk)Kk=1 are computed for each sample in the batch,
according to Eq. 3.9. At this stage, the collection of subspace relevances (Rk)Kk=1, associ-
ated with the duplicates (xn,m)K

m=1 are masked, such that solely the relevance score Rk=m

remains for the subsequent backward pass. The first sample of each mini-batch, i.e. the
original instance xn,m=0, keeps the relevances of all subspaces, i.e. sums concept relevances
according to

P
K

k=1Rk. This enables the extraction of the standard heatmap for instance
xn,m=0. Subsequently, subspace relevances can be attributed onto the preceding layer j

with Eq. 3.10. Form this point, the normal redistribution process as defined within the
LRP composite can be performed, to attribute relevances onto input features.

B.3. Audios from Explanations

The transformation pipeline is implemented in the class Mel2Audio in audiogen.py. This
class has to be initialized with a data point (log-mel-spectrogram), the component heatmaps,
and the path to the original audio sample to extract the phase information. The threshold
⌧p, mentioned in Section 3.3, is calculated for each sample according to the 90th-percentile.
This value showed empirically the best results. However, a histogram plot averaged over
rectified, normalized component heatmaps with K = 4 subspaces of 600 mel-spectrograms
(i.e. 2400 component heatmaps), is displayed in Fig. B.3. It depicts the 90th-percentile of
relevance scores, as well as the summation of mean and standard deviation.

Figure B.3.: Histogram plot of the averaged relevance distribution across 2400 component
heatmaps, generated from a dataset comprising 600 log-mel-spectrograms.

C | Qualitative Evaluation Supplement
C.1. Synthetic Data

Fig. C.1 displays explanations extracted for synthetic toy class 2. Exemplary audio objects
of class 2 are provided within Fig. C.2. In each title, the index k defines to which subspace
each heatmap corresponds. It is apparent that especially audio objects 3, and 4 (in Fig.
C.2) are decently disentangled, and represented by subspaces k = 2, and k = 3 respectively.
Fig. C.3 shows explanations extracted at different layers throughout the network. We
can see that for lower layers, no noticeable disentanglement can be achieved, and for the
ultimate convolutional layer, the components collapse into one main explanation.

Figure C.1.: Multiple examples of the explanation disentanglement achieved with DRSA
on toy class 2 at Conv3. Order of images, and Notation within their titles
follows Fig. 4.3. �: synthetic/explanations/class2

Figure C.2.: Class specific audio objects of synthetic class 2. �: synthetic/class2

IX

C.1. Synthetic Data X

Figure C.3.: Multiple examples of the explanation disentanglement achieved with DRSA
on toy class 2 at different convolutional layers. The order of images, and
notation within their titles follows Fig. C.1.

C.2. GTZAN Data XI

C.2. GTZAN Data

This chapter provides further examples of explanation components extracted on several
genre classes. Starting off with Fig. C.4, the aforementioned ‘chop’ for genre class reggae
is represented by subspace k = 1 and k = 2. Apart from the ‘chop’, through careful audible
inspection, we can observe that subspace k = 3 represents the base line, and subape k = 4

the kick drums. Fig. C.5 displays concepts extracted for metal music. These components
represent: low frequency base lines and kick drums (k = 1), vocals and e-guitar (k = 2),
high frequent snare drums (k = 3), and e-guitar noise combined with kick drums (k = 4).
Disentangled explanations for classical music are displayed in Fig. C.6. To recover: classi-
cal music achieved the highest �AUPC score (refer to Fig. 4.10). The components seem
to correspond to different patters, yet, domain knowledge and further examination has to
be conducted to interpret the musical objects represented by the heatmaps.

Figure C.4.: DRSA results on genre class reggae, with K = 4 subspaces at at Conv4.
The order of images, and notation within their titles follows Fig. 4.6.
�: gtzan/reggae

Fig. C.7 and C.8 show explanations extracted for genre hiphop at Conv4, with K = 2, and
K = 8 subspaces respectively. The samples are the same as used in Fig. 4.6. It is apparent
that the component heatmaps are arguable worse than sub-explanations generated with
K = 4 subspaces.

C.2. GTZAN Data XII

Figure C.5.: DRSA results on genre class metal, with K = 4 subspaces at Conv4. The order
of images, and notation within their titles follows Fig. 4.6. �: gtzan/metal

Figure C.6.: DRSA results on genre class classical, with K = 4 subspaces at Conv4.
The order of images, and notation within their titles follows Fig. C.4.
�: gtzan/classical

C.2. GTZAN Data XIII

Figure C.7.: DRSA results on genre class hiphop, with K = 2 subspaces, extracted at
Conv4. The notation within the titles follows Fig. 4.6.

Figure C.8.: DRSA results on genre class hiphop, with K = 8 subspaces, extracted at
Conv4. The notation within the titles follows Fig. 4.6.

D | Synthetic Data Generation

This chapter elaborates on the generation process of the synthetic dataset. Information
stated in this chapter is mainly extracted from [80]. As mentioned in Section 4.1.1, each
sample is a combination of up to four class specific audio object, random sounds, and
Gaussian noise with a noise strength of 0.1. Each audio object has a fundamental sound
frequency f , which is sampled randomly form a predefined range. Refer to Table 4.1 for
details. The fundamental sound signal x[n], with n 2 N , and N 2 N being its total length,
is represented by a periodic sine-wave with

x[n] = Amod[n] · sin(
2⇡ · kf · n

N
+ �f) , (D.1)

where �f defines the phase of the signal, and Amod[n] denotes the amplitude at time point
n. The parameter kf defines the frequency of the signal according to

f =
kffs

N
. (D.2)

Since the sample rate fs is chosen to be 16000Hz and the duration of each object is set to
1 second, Eq. D.2 simplifies to f = kf . The modulating amplitude is characterized as a
periodic sine-wave by

Amod[n] = max(0,↵ · sin(2⇡ · ka · n
N

+ �a) + �) · 1

� + 1
, (D.3)

where ka denotes the frequency of the signal. Furthermore, ↵ is the maximum amplitude
of the sine-wave that is sampled randomly within the range [0.5, 1], and � 2 [0, 1] defines
an amplitude shift which alters the modulation structure and is set differently between
sound objects. For instance, � = 0 results in a half-wave rectified sine-wave. The fraction
1

�+1 serves as normalization term, to assure all values Amod[n] in N are within the range
of [0, 1]. Furthermore, phases �f , and �a, are both sampled at random from the range
[0, 2⇡]. This allows rhythmic structures to occur at different time points.

D.1. Synthetic Toy Class 1

For the ease of understandability, Fig. D.1 shows one example per sound object of class
1. The fundamental sound of each signal is generated with Eq. D.1, by sampling its fre-
quency from the predefined ranges stated in Table 4.1. The following sections elaborate
on additional transformations, such as the generation process of modulating amplitudes.

XIV

D.1. Synthetic Toy Class 1 XV

Figure D.1.: Class specific audio objects of toy class 1.

Sound Object 1

Amplitudes for this signal are generated by employing Eq. D.3, with � set to 0. Thereafter,
amplitudes are combined with the fundamental sound, and the resulting signal x011[n] is
masked according to

x11[n] = x
0
11[n] · y[n]>0 , (D.4)

where {} denotes an indicator function which is 1 if the statement in the subscript is true,
and 0 else. The signal y[n] is defined by Eq. D.3, with ka = 2, and � = 0. In consequence,
the operation performed in Eq. D.4, masks the rhythmic base signal at random locations
by incorporating a random phase.

Sound Object 2

The modulation of this sound object is determined by a sawtooth function. The latter is
defined as

Asmod[n] =

����� ·
✓

2⇡ · ks · n
N

+ �s

◆
mod 2⇡

�
· 1

2⇡

���� , (D.5)

where ks denotes its frequency, �s is the phase, � 2 {�1, 1} defines the direction of the
sawtooth, and mod is the modulus operator. For this signal, � is set to 1, and ka to 2.
The phase is sampled at random.

Sound Object 3

Initially, the base signal x
0
13[n], generated with Eq. D.1, is altered by adding the first

subsequent harmonic to it. Harmonics are defined as integer multiples of the base frequency
f of some signal. Hence, it follows

x13[n] = x
0
13[n] + xh1[n] , (D.6)

where the frequency of the base signal x013[n] is given by f13, and the frequency of xh1[n] is

D.2. Synthetic Toy Class 2 XVI

defined as 2f13. Magnitudes for the resulting harmonic signal x13[n] are provided by Eq.
D.3, with a shift of � = 0.75.

Sound Object 4

This object defines a rather simple signal, where the amplitudes are given by Eq. D.3,
with a shift of � = 1.

D.2. Synthetic Toy Class 2

Exemplary audio objects of this class are displayed in Fig. D.2.

Figure D.2.: Class specific audio objects of toy class 2.

Sound Object 1

Magnitudes for this signal are represented by a half-wave rectified sine-wave, i.e., with shift
� set to 0 in Eq. D.3.

Sound Object 2

The amplitudes for this sound object are created according to Eq. D.5, with � set to �1,
to obtain a decreasing sawtooth.

Sound Object 3

Sound object 3 alternates between a base frequency f23, and an upper frequency fmax,
which is set to f23 + 600Hz. To construct this signal, 4 separate sine-waves are created
according to Eq. D.1, with evenly spaces frequencies between f23 and fmax. The ampli-
tudes are generated by a half-wave rectified sine-wave. Via controlled masking operations,
each sine-wave is masked to eventually generate a modulating, and alternating signal, as
depicted in Fig. D.2. This signal is restricted to include 12 modulating sounds. Through
randomizing phase of the masking operations, various alternating shapes are generated.

D.2. Synthetic Toy Class 2 XVII

Sound Object 4

Similar to sound object 1 of class 1, amplitudes are defined with a shift of � = 1.

D.2.1. Final Sample Construction

Suppose some sample x[n] corresponding to some class c, with c 2 C and C = 2. Af-
ter superposing up to 4 sound objects associated with class c, 3 � 5 random sound are
added. The base frequency of each random sound signal is sampled from an exponential
distribution that is governed by the probability-density function

f(f ;�) =
1

�
exp(�f

�
) . (D.7)

Eq. D.7 models the probability density at a specific frequency f . The scale parameter
is denoted by � and set to 2000. Sampling frequencies from this distribution ensures a
focus on lower frequencies, which was chosen due to the quasi-logarithmic mel scale. In
consequence, random signals spread nicely across a mel-spectrogram after time-frequency
transformation. Frequencies outside the range of [1, 8000] are clamped. Eventually, a fun-
damental sound signal is randomly combined with a modulating amplitude with shift 2,
and modulation frequency within the range of [40, 100]. In the end, Gaussian noise, with
noise strength 0.01, is added to the resulting sample, and the signal is normalized by peak
as defined by Eq. A.1.

	Introduction
	Motivation
	Outline

	Theoretical Background
	Neural Networks
	Backpropagation
	Convolutional Neural Networks

	Explainable Artificial Intelligence
	Attribution-based Explanation Techniques
	Concept-based Explanation Techniques
	Evaluating Explanations

	Audio Processing
	Audio Representations
	Music Information Retrieval
	Explaining Music Classifiers

	Methodological Setup
	Model
	Explanation Setup
	Local Attribution
	Disentangled Relevant Subspace Analysis
	Two-Step Attribution

	Transforming Explanations into Audios

	Experiments
	Synthetic Data
	Data Construction
	Setup
	Evaluation

	Music Showcase
	Setup
	Qualitative Evaluation
	Quantitative Evaluation

	Conclusion
	Main Findings
	Future Work

	Model Details and Training Info
	Data Preprocessing
	Model Optimization
	Model Evaluation

	Implementation Details
	Layer-wise Relevance Propagation
	Evaluating Local Explanations

	Two-step Attribution and Disentangled Explanations
	Optimization of Subspaces
	Two-step Attribution

	Audios from Explanations

	Qualitative Evaluation Supplement
	Synthetic Data
	GTZAN Data

	Synthetic Data Generation
	Synthetic Toy Class 1
	Synthetic Toy Class 2
	Final Sample Construction

